首页 > 开发 > Python > 正文

opencv-python 提取sift特征并匹配的实例

2024-09-09 19:03:10
字体:
来源:转载
供稿:网友

我就废话不多说,直接上代码吧!

# -*- coding: utf-8 -*-import cv2import numpy as npfrom find_obj import filter_matches,explore_matchfrom matplotlib import pyplot as plt def getSift():  '''  得到并查看sift特征  '''  img_path1 = '../../data/home.jpg'  #读取图像  img = cv2.imread(img_path1)  #转换为灰度图  gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  #创建sift的类  sift = cv2.SIFT()  #在图像中找到关键点 也可以一步计算#kp, des = sift.detectAndCompute  kp = sift.detect(gray,None)  print type(kp),type(kp[0])  #Keypoint数据类型分析 /uploads/cj/201912/4041399.html',img)  plt.imshow(img),plt.show() def matchSift():  '''  匹配sift特征  '''  img1 = cv2.imread('../../data/box.png', 0) # queryImage  img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage  sift = cv2.SIFT()  kp1, des1 = sift.detectAndCompute(img1, None)  kp2, des2 = sift.detectAndCompute(img2, None)  # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)  bf = cv2.BFMatcher()  #返回k个最佳匹配  matches = bf.knnMatch(des1, des2, k=2)  # cv2.drawMatchesKnn expects list of lists as matches.  #opencv2.4.13没有drawMatchesKnn函数,需要将opencv2.4.13/sources/samples/python2下的common.py和find_obj文件放入当前目录,并导入  p1, p2, kp_pairs = filter_matches(kp1, kp2, matches)  explore_match('find_obj', img1, img2, kp_pairs) # cv2 shows image  cv2.waitKey()  cv2.destroyAllWindows() def matchSift3():  '''  匹配sift特征  '''  img1 = cv2.imread('../../data/box.png', 0) # queryImage  img2 = cv2.imread('../../data/box_in_scene.png', 0) # trainImage  sift = cv2.SIFT()  kp1, des1 = sift.detectAndCompute(img1, None)  kp2, des2 = sift.detectAndCompute(img2, None)  # 蛮力匹配算法,有两个参数,距离度量(L2(default),L1),是否交叉匹配(默认false)  bf = cv2.BFMatcher()  #返回k个最佳匹配  matches = bf.knnMatch(des1, des2, k=2)  # cv2.drawMatchesKnn expects list of lists as matches.  #opencv3.0有drawMatchesKnn函数  # Apply ratio test  # 比值测试,首先获取与A 距离最近的点B(最近)和C(次近),只有当B/C  # 小于阈值时(0.75)才被认为是匹配,因为假设匹配是一一对应的,真正的匹配的理想距离为0  good = []  for m, n in matches:    if m.distance < 0.75 * n.distance:      good.append([m])  img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good[:10], None, flags=2)  cv2.drawm  plt.imshow(img3), plt.show() matchSift()

以上这篇opencv-python 提取sift特征并匹配的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林网之家。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表