首页 > 开发 > Python > 正文

用Python实现数据的透视表的方法

2024-09-09 19:02:25
字体:
来源:转载
供稿:网友

在处理数据时,经常需要对数据分组计算均值或者计数,在Microsoft Excel中,可以通过透视表轻易实现简单的分组运算。而对于更加复杂的分组运算,Python中pandas包可以帮助我们实现。

1 数据

首先引入几个重要的包:

import pandas as pdimport numpy as npfrom pandas import DataFrame,Series

通过代码构造数据集:

data=DataFrame({'key1':['a','b','c','a','c','a','b','a','c','a','b','c'],'key2':['one','two','three','two','one','one','three','one','two','three','one','two'],'num1':np.random.rand(12),'num2':np.random.randn(12)})

得到数据集如下:

data key1 key2  num1  num20 a one 0.268705 0.0840911 b two 0.876707 0.2177942 c three 0.229999 0.5744023 a two 0.707990 -1.4444154 c one 0.786064 0.3432445 a one 0.587273 1.2123916 b three 0.927396 1.5053727 a one 0.295271 -0.4976338 c two 0.292721 0.0988149 a three 0.369788 -1.157426

2 交叉表―分类计数

按照不同类进行计数统计是最常见透视功能,可以通

(1)crosstab

#函数:crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

crosstab的index和columns是必须要指定复制的参数:

pd.crosstab(data.key1,data.key2)

结果如下:

key2 one three twokey1     a  3  1 1b  0  1 1c  1  1 1

想要在边框处增加汇总项可以指定margin的值为True:

pd.crosstab(data.key1,data.key2,margins=True)

结果:

key2 one three two Allkey1      a  3  1 1 5b  1  1 1 3c  1  1 2 4All  5  3 4 12

(2)pivot_table

函数:

pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

使用pivot_table函数同样可以实现,运算函数默认值aggfunc='mean',指定为aggfunc='count'即可:

data.pivot_table('num1',index='key1',columns='key2',aggfunc='count')

结果相同:

key2 one three twokey1     a  3  1 1b  1  1 1c  1  1 2

(3)groupby

通过groupby相对来说会更加复杂,首先需要对data按照key1和key2进行聚类,然后进行count运算,再将key2的index重塑为columns:

data.groupby(['key1','key2'])['num1'].count().unstack()

结果:

key2 one three twokey1     a  3  1 1b  1  1 1c  1  1 2

3 其它透视表运算

(1)pivot_table

pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

要进行何种运算,只需要指定aggfunc即可。

默认计算均值:

data.pivot_table(index='key1',columns='key2')

out:

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表