首页 > 开发 > Python > 正文

Python 进程操作之进程间通过队列共享数据,队列Queue简单示例

2024-09-09 19:02:11
字体:
来源:转载
供稿:网友

本文实例讲述了Python 进程操作之进程间通过队列共享数据,队列Queue。分享给大家供大家参考,具体如下:

队列中的数据是放在内存中的,可以通过分布式缓存redis优化队列。

demo.py(进程通过队列共享数据):

import multiprocessingdef download_from_web(q):  """下载数据"""  # 模拟从网上下载的数据  data = [11, 22, 33, 44]  # 向队列中写入数据  for temp in data:    q.put(temp) # 队列中写数据,队列满了会阻塞。 put_nowait() 队列满了会抛异常  print("---下载器已经下载完了数据并且存入到队列中----")def analysis_data(q):  """数据处理"""  waitting_analysis_data = list()  # 从队列中获取数据  while True:    data = q.get() # 队列中读数据,队列空了会阻塞。 get_nowait() 队列空了会抛异常    waitting_analysis_data.append(data)    if q.empty(): # 队列是否为空。 q.full() 队列是否满了。      break  # 模拟数据处理  print(waitting_analysis_data)def main():  # 1. 创建一个队列 (先进先出)  q = multiprocessing.Queue(10) # 最多放10个数据。 如果不指定长度,默认最大(和硬件相关)  # 2. 创建多个进程,将队列的引用当做实参进行传递  p1 = multiprocessing.Process(target=download_from_web, args=(q,))  p2 = multiprocessing.Process(target=analysis_data, args=(q,))  p1.start()  p2.start()if __name__ == "__main__":  main()

运行结果:

---下载器已经下载完了数据并且存入到队列中----
[11, 22, 33, 44]

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表