首页 > 服务器 > Web服务器 > 正文

基于CentOS的Hadoop分布式环境的搭建开发

2024-09-01 13:49:17
字体:
来源:转载
供稿:网友

首先,要说明的一点的是,我不想重复发明轮子。如果想要搭建Hadoop环境,网上有很多详细的步骤和命令代码,我不想再重复记录。

其次,我要说的是我也是新手,对于Hadoop也不是很熟悉。但是就是想实际搭建好环境,看看他的庐山真面目,还好,还好,最好看到了。当运行wordcount词频统计的时候,实在是感叹hadoop已经把分布式做的如此之好,即使没有分布式相关经验的人,也只需要做一些配置即可运行分布式集群环境。

好了,言归真传。

在搭建Hadoop环境中你要知道的一些事儿:

1.hadoop运行于Linux系统之上,你要安装Linux操作系统

2.你需要搭建一个运行hadoop的集群,例如局域网内能互相访问的linux系统

3.为了实现集群之间的相互访问,你需要做到ssh无密钥登录

4.hadoop的运行在JVM上的,也就是说你需要安装Java的JDK,并配置好JAVA_HOME

5.hadoop的各个组件是通过XML来配置的。在官网上下载好hadoop之后解压缩,修改/etc/hadoop目录中相应的配置文件

工欲善其事,必先利其器。这里也要说一下,在搭建hadoop环境中使用到的相关软件和工具:

1.VirtualBox——毕竟要模拟几台linux,条件有限,就在VirtualBox中创建几台虚拟机楼

2.CentOS——下载的CentOS7的iso镜像,加载到VirtualBox中,安装运行

3.secureCRT——可以SSH远程访问linux的软件

4.WinSCP——实现windows和Linux的通信

5.JDK for linux——Oracle官网上下载,解压缩之后配置一下即可

6.hadoop2.7.1——可在Apache官网上下载

好了,下面分三个步骤来讲解

Linux环境准备

 配置IP

为了实现本机和虚拟机以及虚拟机和虚拟机之间的通信,VirtualBox中设置CentOS的连接模式为Host-Only模式,并且手动设置IP,注意虚拟机的网关和本机中host-only network 的IP地址相同。配置IP完成后还要重启网络服务以使得配置有效。这里搭建了三台Linux,如下图所示

centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

配置主机名字

对于192.168.56.101设置主机名字hadoop01。并在hosts文件中配置集群的IP和主机名。其余两个主机的操作与此类似

[root@hadoop01 ~]# cat /etc/sysconfig/network # Created by anaconda NETWORKING = yes HOSTNAME = hadoop01   [root@hadoop01 ~]# cat /etc/hosts 127.0.0.1  localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1     localhost localhost.localdomain localhost6 localhost6.localdomain6 192.168.56.101 hadoop01 192.168.56.102 hadoop02 192.168.56.103 hadoop03 

永久关闭防火墙

service iptables stop(1.下次重启机器后,防火墙又会启动,故需要永久关闭防火墙的命令;2由于用的是CentOS 7,关闭防火墙的命令如下)

systemctl stop firewalld.service    #停止firewallsystemctl disable firewalld.service #禁止firewall开机启动

关闭SeLinux防护系统

改为disabled 。reboot重启机器,使配置生效

[root@hadoop02 ~]# cat /etc/sysconfig/selinux  # This file controls the state of SELinux on the system # SELINUX= can take one of these three values: #   enforcing - SELinux security policy is enforced  #   permissive - SELinux prints warnings instead of enforcing #   disabled - No SELinux policy is loaded SELINUX=disabled # SELINUXTYPE= can take one of three two values: #   targeted - Targeted processes are protected, #   minimum - Modification of targeted policy Only selected processes are protected #   mls - Multi Level Security protection SELINUXTYPE=targeted  

集群SSH免密码登录

首先设置ssh密钥

ssh-keygen -t rsa 

拷贝ssh密钥到三台机器

ssh-copy-id 192.168.56.101 <pre name="code" class="plain">ssh-copy-id 192.168.56.102 
ssh-copy-id 192.168.56.103

这样如果hadoop01的机器想要登录hadoop02,直接输入ssh hadoop02

<pre name="code" class="plain">ssh hadoop02 

配置JDK

这里在/home忠诚创建三个文件夹中

tools——存放工具包

softwares——存放软件

data——存放数据

通过WinSCP将下载好的Linux JDK上传到hadoop01的/home/tools中

解压缩JDK到softwares中

<pre name="code" class="plain">tar -zxf jdk-7u76-linux-x64.tar.gz -C /home/softwares 

可见JDK的家目录在/home/softwares/JDK.x.x.x,将该目录拷贝粘贴到/etc/profile文件中,并且在文件中设置JAVA_HOME

export JAVA_HOME=/home/softwares/jdk0_111 export PATH=$PATH:$JAVA_HOME/bin 

保存修改,执行source /etc/profile使配置生效

查看Java jdk是否安装成功:

java -version 

可以将当前节点中设置的文件拷贝到其他节点

scp -r /home/* root@192.168.56.10X:/home 

Hadoop集群安装

集群的规划如下:

101节点作为HDFS的NameNode ,其余作为DataNode;102作为YARN的ResourceManager,其余作为NodeManager。103作为SecondaryNameNode。分别在101和102节点启动JobHistoryServer和WebAppProxyServercentos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

下载hadoop-2.7.3

并将其放在/home/softwares文件夹中。由于hadoop需要JDK的安装环境,所以首先配置/etc/hadoop/hadoop-env.sh的JAVA_HOME

(PS:感觉我用的jdk版本过高了)centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

接下来依次修改hadoop相应组件对应的XML

修改core-site.xml :

指定namenode地址

修改hadoop的缓存目录

hadoop的垃圾回收机制

<configuration>   <property>     <name>fsdefaultFS</name>     <value>hdfs://101:8020</value>   </property>   <property>     <name>hadooptmpdir</name>     <value>/home/softwares/hadoop-3/data/tmp</value>   </property>   <property>     <name>fstrashinterval</name>     <value>10080</value>   </property>    </configuration> 

hdfs-site.xml

设置备份数目

关闭权限

设置http访问接口

设置secondary namenode 的IP地址

<configuration>   <property>     <name>dfsreplication</name>     <value>3</value>   </property>   <property>     <name>dfspermissionsenabled</name>     <value>false</value>   </property>   <property>     <name>dfsnamenodehttp-address</name>     <value>101:50070</value>   </property>   <property>     <name>dfsnamenodesecondaryhttp-address</name>     <value>103:50090</value>   </property> </configuration> 

 修改mapred-site.xml.template名字为mapred-site.xml

指定mapreduce的框架为yarn,通过yarn来调度

指定jobhitory

指定jobhitory的web端口

开启uber模式——这是针对mapreduce的优化

<configuration>   <property>     <name>mapreduceframeworkname</name>     <value>yarn</value>   </property>   <property>     <name>mapreducejobhistoryaddress</name>     <value>101:10020</value>   </property>   <property>     <name>mapreducejobhistorywebappaddress</name>     <value>101:19888</value>   </property>   <property>     <name>mapreducejobubertaskenable</name>     <value>true</value>   </property> </configuration> 

修改yarn-site.xml

指定mapreduce为shuffle

指定102节点为resourcemanager

指定102节点的安全代理

开启yarn的日志

指定yarn日志删除时间

指定nodemanager的内存:8G

指定nodemanager的CPU:8核

<configuration>  <!-- Site specific YARN configuration properties -->   <property>     <name>yarnnodemanageraux-services</name>     <value>mapreduce_shuffle</value>   </property>   <property>     <name>yarnresourcemanagerhostname</name>     <value>102</value>   </property>   <property>     <name>yarnweb-proxyaddress</name>     <value>102:8888</value>   </property>   <property>     <name>yarnlog-aggregation-enable</name>     <value>true</value>   </property>   <property>     <name>yarnlog-aggregationretain-seconds</name>     <value>604800</value>   </property>   <property>     <name>yarnnodemanagerresourcememory-mb</name>     <value>8192</value>   </property>   <property>     <name>yarnnodemanagerresourcecpu-vcores</name>     <value>8</value>   </property>  </configuration> 

配置slaves

指定计算节点,即运行datanode和nodemanager的节点

192.168.56.101 
192.168.56.102 
192.168.56.103 

先在namenode节点格式化,即101节点上执行:

进入到hadoop主目录: cd /home/softwares/hadoop-3  

执行bin目录下的hadoop脚本: bin/hadoop namenode -format 

出现successful format才算是执行成功(PS,这里是盗用别人的图,不要介意哈) centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

 以上配置完成后,将其拷贝到其他的机器

Hadoop环境测试

进入hadoop主目录下执行相应的脚本文件

jps命令——java Virtual Machine Process Status,显示运行的java进程

在namenode节点101机器上开启hdfs

[root@hadoop01 hadoop-3]# sbin/start-dfssh  Java HotSpot(TM) Client VM warning: You have loaded library /home/softwares/hadoop-3/lib/native/libhadoopso which might have disabled stack guard The VM will try to fix the stack guard now It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack' 16/11/07 16:49:19 WARN utilNativeCodeLoader: Unable to load native-hadoop library for your platform using builtin-java classes where applicable Starting namenodes on [hadoop01] hadoop01: starting namenode, logging to /home/softwares/hadoop-3/logs/hadoop-root-namenode-hadoopout 102: starting datanode, logging to /home/softwares/hadoop-3/logs/hadoop-root-datanode-hadoopout 103: starting datanode, logging to /home/softwares/hadoop-3/logs/hadoop-root-datanode-hadoopout 101: starting datanode, logging to /home/softwares/hadoop-3/logs/hadoop-root-datanode-hadoopout Starting secondary namenodes [hadoop03] hadoop03: starting secondarynamenode, logging to /home/softwares/hadoop-3/logs/hadoop-root-secondarynamenode-hadoopout 

此时101节点上执行jps,可以看到namenode和datanode已经启动

[root@hadoop01 hadoop-3]# jps 7826 Jps 7270 DataNode 7052 NameNode 

在102和103节点执行jps,则可以看到datanode已经启动

[root@hadoop02 bin]# jps 4260 DataNode 4488 Jps  [root@hadoop03 ~]# jps 6436 SecondaryNameNode 6750 Jps 6191 DataNode 

启动yarn

在102节点执行

[root@hadoop02 hadoop-3]# sbin/start-yarnsh  starting yarn daemons starting resourcemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-resourcemanager-hadoopout 101: starting nodemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-nodemanager-hadoopout 103: starting nodemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-nodemanager-hadoopout 102: starting nodemanager, logging to /home/softwares/hadoop-3/logs/yarn-root-nodemanager-hadoopout 

jps查看各节点:

[root@hadoop02 hadoop-3]# jps 4641 ResourceManager 4260 DataNode 4765 NodeManager 5165 Jps   [root@hadoop01 hadoop-3]# jps 7270 DataNode 8375 Jps 7976 NodeManager 7052 NameNode   [root@hadoop03 ~]# jps 6915 NodeManager 6436 SecondaryNameNode 7287 Jps 6191 DataNode 

分别启动相应节点的jobhistory和防护进程

[root@hadoop01 hadoop-3]# sbin/mr-jobhistory-daemonsh start historyserver starting historyserver, logging to /home/softwares/hadoop-3/logs/mapred-root-historyserver-hadoopout [root@hadoop01 hadoop-3]# jps 8624 Jps 7270 DataNode 7976 NodeManager 8553 JobHistoryServer 7052 NameNode  [root@hadoop02 hadoop-3]# sbin/yarn-daemonsh start proxyserver starting proxyserver, logging to /home/softwares/hadoop-3/logs/yarn-root-proxyserver-hadoopout [root@hadoop02 hadoop-3]# jps 4641 ResourceManager 4260 DataNode 5367 WebAppProxyServer 5402 Jps 4765 NodeManager 

在hadoop01节点,即101节点上,通过浏览器查看节点状况 centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

hdfs上传文件

[root@hadoop01 hadoop-3]# bin/hdfs dfs -put /etc/profile /profile 

运行wordcount程序

[root@hadoop01 hadoop-3]# bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-jar wordcount /profile /fll_out Java HotSpot(TM) Client VM warning: You have loaded library /home/softwares/hadoop-3/lib/native/libhadoopso which might have disabled stack guard The VM will try to fix the stack guard now It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack' 16/11/07 17:17:10 WARN utilNativeCodeLoader: Unable to load native-hadoop library for your platform using builtin-java classes where applicable 16/11/07 17:17:12 INFO clientRMProxy: Connecting to ResourceManager at /102:8032 16/11/07 17:17:18 INFO inputFileInputFormat: Total input paths to process : 1 16/11/07 17:17:19 INFO mapreduceJobSubmitter: number of splits:1 16/11/07 17:17:19 INFO mapreduceJobSubmitter: Submitting tokens for job: job_1478509135878_0001 16/11/07 17:17:20 INFO implYarnClientImpl: Submitted application application_1478509135878_0001 16/11/07 17:17:20 INFO mapreduceJob: The url to track the job: http://102:8888/proxy/application_1478509135878_0001/ 16/11/07 17:17:20 INFO mapreduceJob: Running job: job_1478509135878_0001 16/11/07 17:18:34 INFO mapreduceJob: Job job_1478509135878_0001 running in uber mode : true 16/11/07 17:18:35 INFO mapreduceJob: map 0% reduce 0% 16/11/07 17:18:43 INFO mapreduceJob: map 100% reduce 0% 16/11/07 17:18:50 INFO mapreduceJob: map 100% reduce 100% 16/11/07 17:18:55 INFO mapreduceJob: Job job_1478509135878_0001 completed successfully 16/11/07 17:18:59 INFO mapreduceJob: Counters: 52     File System Counters         FILE: Number of bytes read=4264         FILE: Number of bytes written=6412         FILE: Number of read operations=0         FILE: Number of large read operations=0         FILE: Number of write operations=0         HDFS: Number of bytes read=3940         HDFS: Number of bytes written=261673         HDFS: Number of read operations=35         HDFS: Number of large read operations=0         HDFS: Number of write operations=8     Job Counters          Launched map tasks=1         Launched reduce tasks=1         Other local map tasks=1         Total time spent by all maps in occupied slots (ms)=8246         Total time spent by all reduces in occupied slots (ms)=7538         TOTAL_LAUNCHED_UBERTASKS=2         NUM_UBER_SUBMAPS=1         NUM_UBER_SUBREDUCES=1         Total time spent by all map tasks (ms)=8246         Total time spent by all reduce tasks (ms)=7538         Total vcore-milliseconds taken by all map tasks=8246         Total vcore-milliseconds taken by all reduce tasks=7538         Total megabyte-milliseconds taken by all map tasks=8443904         Total megabyte-milliseconds taken by all reduce tasks=7718912     Map-Reduce Framework         Map input records=78         Map output records=256         Map output bytes=2605         Map output materialized bytes=2116         Input split bytes=99         Combine input records=256         Combine output records=156         Reduce input groups=156         Reduce shuffle bytes=2116         Reduce input records=156         Reduce output records=156         Spilled Records=312         Shuffled Maps =1         Failed Shuffles=0         Merged Map outputs=1         GC time elapsed (ms)=870         CPU time spent (ms)=1970         Physical memory (bytes) snapshot=243326976         Virtual memory (bytes) snapshot=2666557440         Total committed heap usage (bytes)=256876544     Shuffle Errors         BAD_ID=0         CONNECTION=0         IO_ERROR=0         WRONG_LENGTH=0         WRONG_MAP=0         WRONG_REDUCE=0     File Input Format Counters          Bytes Read=1829     File Output Format Counters          Bytes Written=1487 

浏览器中通过YARN查看运行状态 centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

查看最后的词频统计结果

浏览器中查看hdfs的文件系统centos搭建hadoop环境,hadoop分布式环境搭建,hadoop分布式搭建

[root@hadoop01 hadoop-3]# bin/hdfs dfs -cat /fll_out/part-r-00000 Java HotSpot(TM) Client VM warning: You have loaded library /home/softwares/hadoop-3/lib/native/libhadoopso which might have disabled stack guard The VM will try to fix the stack guard now It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack' 16/11/07 17:29:17 WARN utilNativeCodeLoader: Unable to load native-hadoop library for your platform using builtin-java classes where applicable !=   1 "$-"  1 "$2"  1 "$EUID" 2 "$HISTCONTROL" 1 "$i"  3 "${-#*i}"    1 "0"   1 ":${PATH}:"   1 "`id  2 "after" 1 "ignorespace"  1 #    13 $UID  1 &&   1 ()   1 *)   1 *:"$1":*)    1 -f   1 -gn`"  1 -gt   1 -r   1 -ru`  1 -u`   1 -un`"  2 -x   1 -z   1     2 /etc/bashrc   1 /etc/profile  1 /etc/profiled/ 1 /etc/profiled/*sh   1 /usr/bin/id   1 /usr/local/sbin 2 /usr/sbin    2 /usr/share/doc/setup-*/uidgid  1 002   1 022   1 199   1 200   1 2>/dev/null`  1 ;    3 ;;   1 =    4 >/dev/null   1 By   1 Current 1 EUID=`id    1 Functions    1 HISTCONTROL   1 HISTCONTROL=ignoreboth 1 HISTCONTROL=ignoredups 1 HISTSIZE    1 HISTSIZE=1000  1 HOSTNAME    1 HOSTNAME=`/usr/bin/hostname   1 It's  2 JAVA_HOME=/home/softwares/jdk0_111 1 LOGNAME 1 LOGNAME=$USER  1 MAIL  1 MAIL="/var/spool/mail/$USER"  1 NOT   1 PATH  1 PATH=$1:$PATH  1 PATH=$PATH:$1  1 PATH=$PATH:$JAVA_HOME/bin    1 Path  1 System 1 This  1 UID=`id 1 USER  1 USER="`id    1 You   1 [    9 ]    3 ];   6 a    2 after  2 aliases 1 and   2 are   1 as   1 better 1 case  1 change 1 changes 1 check  1 could  1 create 1 custom 1 customsh    1 default,    1 do   1 doing 1 done  1 else  5 environment   1 environment,  1 esac  1 export 5 fi   8 file  2 for   5 future 1 get   1 go   1 good  1 i    2 idea  1 if   8 in   6 is   1 it   1 know  1 ksh   1 login  2 make  1 manipulation  1 merging 1 much  1 need  1 pathmunge    6 prevent 1 programs,    1 reservation   1 reserved    1 script 1 set  1 sets  1 setup  1 shell  2 startup 1 system 1 the   1 then  8 this  2 threshold    1 to   5 uid/gids    1 uidgid 1 umask  3 unless 1 unset  2 updates    1 validity    1 want  1 we   1 what  1 wide  1 will  1 workaround   1 you   2 your  1 {    1 }    1 

这就代表hadoop集群正确

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表