日常的OLTP环境中,有时会涉及到一些统计方面的SQL语句,这些语句可能消耗巨大,进而影响整体运行环境,这里我为大家介绍如何利用SQL Server中的”类MapReduce”方式,在特定的统计情形中不牺牲响应速度的情形下减少资源消耗.
我们可能经常会利用开窗函数对巨大的数据集进行分组统计排序.比如下面的例子:
脚本环境
/*This script creates two new tables in AdventureWorks:dbo.bigProductdbo.bigTransactionHistory*/USE AdventureWorksGOSELECT p.ProductID + (a.number * 1000) AS ProductID, p.Name + CONVERT(VARCHAR, (a.number * 1000)) AS Name, p.ProductNumber + '-' + CONVERT(VARCHAR, (a.number * 1000)) AS ProductNumber, p.MakeFlag, p.FinishedGoodsFlag, p.Color, p.SafetyStockLevel, p.ReorderPoint, p.StandardCost, p.ListPrice, p.Size, p.SizeUnitMeasureCode, p.WeightUnitMeasureCode, p.Weight, p.DaysToManufacture, p.ProductLine, p.Class, p.Style, p.ProductSubcategoryID, p.ProductModelID, p.SellStartDate, p.SellEndDate, p.DiscontinuedDateINTO bigProductFROM Production.Product AS pCROSS JOIN master..spt_values AS aWHERE a.type = 'p' AND a.number BETWEEN 1 AND 50GOALTER TABLE bigProductALTER COLUMN ProductId INT NOT NULL GOALTER TABLE bigProductADD CONSTRAINT pk_bigProduct PRIMARY KEY (ProductId)GOSELECT ROW_NUMBER() OVER ( ORDER BY x.TransactionDate, (SELECT NEWID()) ) AS TransactionID, p1.ProductID, x.TransactionDate, x.Quantity, CONVERT(MONEY, p1.ListPrice * x.Quantity * RAND(CHECKSUM(NEWID())) * 2) AS ActualCostINTO bigTransactionHistoryFROM( SELECT p.ProductID, p.ListPrice, CASE WHEN p.productid % 26 = 0 THEN 26 WHEN p.productid % 25 = 0 THEN 25 WHEN p.productid % 24 = 0 THEN 24 WHEN p.productid % 23 = 0 THEN 23 WHEN p.productid % 22 = 0 THEN 22 WHEN p.productid % 21 = 0 THEN 21 WHEN p.productid % 20 = 0 THEN 20 WHEN p.productid % 19 = 0 THEN 19 WHEN p.productid % 18 = 0 THEN 18 WHEN p.productid % 17 = 0 THEN 17 WHEN p.productid % 16 = 0 THEN 16 WHEN p.productid % 15 = 0 THEN 15 WHEN p.productid % 14 = 0 THEN 14 WHEN p.productid % 13 = 0 THEN 13 WHEN p.productid % 12 = 0 THEN 12 WHEN p.productid % 11 = 0 THEN 11 WHEN p.productid % 10 = 0 THEN 10 WHEN p.productid % 9 = 0 THEN 9 WHEN p.productid % 8 = 0 THEN 8 WHEN p.productid % 7 = 0 THEN 7 WHEN p.productid % 6 = 0 THEN 6 WHEN p.productid % 5 = 0 THEN 5 WHEN p.productid % 4 = 0 THEN 4 WHEN p.productid % 3 = 0 THEN 3 WHEN p.productid % 2 = 0 THEN 2 ELSE 1 END AS ProductGroup FROM bigproduct p) AS p1CROSS APPLY( SELECT transactionDate, CONVERT(INT, (RAND(CHECKSUM(NEWID())) * 100) + 1) AS Quantity FROM ( SELECT DATEADD(dd, number, '20050101') AS transactionDate, NTILE(p1.ProductGroup) OVER ( ORDER BY number ) AS groupRange FROM master..spt_values WHERE type = 'p' ) AS z WHERE z.groupRange % 2 = 1) AS xALTER TABLE bigTransactionHistoryALTER COLUMN TransactionID INT NOT NULLGOALTER TABLE bigTransactionHistoryADD CONSTRAINT pk_bigTransactionHistory PRIMARY KEY (TransactionID)GOCREATE NONCLUSTERED INDEX IX_ProductId_TransactionDateON bigTransactionHistory( ProductId, TransactionDate)INCLUDE ( Quantity, ActualCost)GOView Code
当我们针对bigProduct表的productid分组,并按照bigTransactionHistory的actualcost
及quantity分别排序取结果集语句如下:
code
Declare@p1 int,@p2 nvarchar(56),@p3 smallint,@p4 int,@p5 bigint,@p6 bigintselect @p1=p.productid,@p2=p.productnumber,@p3=p.reorderpoint,@p4=th.transactionid,@p5=rank()over (partition by p.productid order by th.actualcost desc),@p6=rank()over (partition by p.productid order by th.quantity desc)from bigproduct as pjoin bigtransactionhistory as th on th.productid=p.productidwhere p.productid between 1001 and 3001
执行此语句并输出实际执行计划如图1-1
新闻热点
疑难解答