通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询。例如下面这个SQL:
SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10; |
或者像下面这个不带任何条件的分页SQL:
SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10; |
一般而言,分页SQL的耗时随着 start 值的增加而急剧增加,我们来看下面这2个不同起始值的分页SQL执行耗时:
yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10;…10 rows in set (0.05 sec)yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=6 ORDER BY id DESC LIMIT 935500, 10;…10 rows in set (2.39 sec) |
可以看到,随着分页数量的增加,SQL查询耗时也有数十倍增加,显然不科学。今天我们就来分析下,如何能优化这个分页方案。 一般滴,想要优化分页的终极方案就是:没有分页,哈哈哈~~~,不要说我讲废话,确实如此,可以把分页算法交给Sphinx、Lucence等第三方解决方案,没必要让MySQL来做它不擅长的事情。 当然了,有小伙伴说,用第三方太麻烦了,我们就想用MySQL来做这个分页,咋办呢?莫急,且待我们慢慢分析,先看下表DDL、数据量、查询SQL的执行计划等信息:
yejr@imysql.com> SHOW CREATE TABLE `t1`;CREATE TABLE `t1` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT,... `ftype` tinyint(3) unsigned NOT NULL,... PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;yejr@imysql.com> select count(*) from t1;+----------+| count(*) |+----------+| 994584 |+----------+yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10/G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: t1 type: indexpossible_keys: NULL key: PRIMARY key_len: 4 ref: NULL rows: 510 Extra: Using whereyejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500, 10/G*************************** 1. row *************************** id: 1 select_type: SIMPLE table: t1 type: indexpossible_keys: NULL key: PRIMARY key_len: 4 ref: NULL rows: 935510 Extra: Using where |
可以看到,虽然通过主键索引进行扫描了,但第二个SQL需要扫描的记录数太大了,而且需要先扫描约935510条记录,然后再根据排序结果取10条记录,这肯定是非常慢了。 针对这种情况,我们的优化思路就比较清晰了,有两点:
1、尽可能从索引中直接获取数据,避免或减少直接扫描行数据的频率
2、尽可能减少扫描的记录数,也就是先确定起始的范围,再往后取N条记录即可
据此,我们有两种相应的改写方法:子查询、表连接,即下面这样的:
#采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取10行结果集
新闻热点
疑难解答