首页 > 数据库 > MySQL > 正文

美团网技术团队分享的MySQL索引及慢查询优化教程

2024-07-24 12:45:25
字体:
来源:转载
供稿:网友

MySQL凭借着出色的性能、低廉的成本、丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库。虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位描述上看到诸如“精通MySQL”、“SQL语句优化”、“了解数据库原理”等要求。我们知道一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,所以查询语句的优化显然是重中之重。
本人从13年7月份起,一直在美团核心业务系统部做慢查询的优化工作,共计十余个系统,累计解决和积累了上百个慢查询案例。随着业务的复杂性提升,遇到的问题千奇百怪,五花八门,匪夷所思。本文旨在以开发工程师的角度来解释数据库索引的原理和如何优化慢查询。

一个慢查询引发的思考

select count(*) from task where status=2 and operator_id=20839 and operate_time>1371169729 and operate_time<1371174603 and type=2;

系统使用者反应有一个功能越来越慢,于是工程师找到了上面的SQL。
并且兴致冲冲的找到了我,“这个SQL需要优化,给我把每个字段都加上索引”
我很惊讶,问道“为什么需要每个字段都加上索引?”
“把查询的字段都加上索引会更快”工程师信心满满
“这种情况完全可以建一个联合索引,因为是最左前缀匹配,所以operate_time需要放到最后,而且还需要把其他相关的查询都拿来,需要做一个综合评估。”
“联合索引?最左前缀匹配?综合评估?”工程师不禁陷入了沉思。
多数情况下,我们知道索引能够提高查询效率,但应该如何建立索引?索引的顺序如何?许多人却只知道大概。其实理解这些概念并不难,而且索引的原理远没有想象的那么复杂。

MySQL索引原理
索引目的
索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?

索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表