一句T-SQL语句引发的思考 转帖
2024-07-21 02:34:43
供稿:网友
关于MS SQLSERVER索引优化问题:
有表Stress_test(id int, key char(2))
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]id 上有普通索引;
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]key 上有簇索引;
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]id 有有限量的重复;
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]key 有无限量的重复;
现在我需要按逻辑与查询表中key='Az' AND key='Bw' AND key='Cv' 的id
求教高手最有效的查询语句
测试环境:
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]Hardware:P4 2.6+512M+80G
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]Software:windows server 2003(EnterPRise Edition)+Sqlserver 2000 +sp3a
[$nbsp][$nbsp]首先我们建立一个测试的数据,为使数据尽量的分布和随即,我们通过RAND()来随机产生2个随机数再组合成一个字符串,首先插入的数据是1,000,000条记录,然后在循环插入到58,000,000条记录。
[$nbsp][$nbsp][$nbsp]因为是随机产生的数据,所以假如你自己测试的数据集和我测试的会不一样,但对索引的优化和运行的效率是一样的。
[$nbsp][$nbsp][$nbsp]下面的“--//测试脚本”是产生测试数据的脚本,你可以根据需要修改 @maxgroup, @maxLoop的值,比如测试1百万的记录可以:
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]Select @maxgroup=1000
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]Select @maxLoop=1000
假如要测试5千万:
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]Select @maxgroup=5000
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]Select @maxLoop=10000
所以假如你的SERVER或PC比较慢,请耐心等待.....,
(在我的PC上运行的速度是插入1百万条的时间是1.14m,插入5千八百万条的时间是19.41m,重新建立INDEX的时间是34.36m)
作为一般的开发人员很轻易就想到的语句:
[$nbsp][$nbsp][$nbsp]--语句1
[$nbsp][$nbsp][$nbsp][$nbsp]select a.[id] from
[$nbsp][$nbsp][$nbsp][$nbsp](select distinct [id] from stress_test where [key] = 'Az') a,
[$nbsp][$nbsp][$nbsp][$nbsp](select distinct [id] from stress_test where [key] = 'Bw') b ,
[$nbsp][$nbsp][$nbsp][$nbsp](select distinct [id] from stress_test where [key] = 'Cv') c
[$nbsp][$nbsp][$nbsp][$nbsp]where a.id = b.id and a.id = c.id
[$nbsp][$nbsp][$nbsp]--语句2
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]select [id]
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]from stress_test
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]where [key]='Az' or [key]='Bw' or [key]='Cv'
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]group by id having(count(distinct [key])=3)
[$nbsp][$nbsp][$nbsp]--语句5
[$nbsp][$nbsp][$nbsp][$nbsp]SELECT distinct a.[id] FROM stress_test AS a,stress_test AS b,stress_test AS c
[$nbsp][$nbsp][$nbsp][$nbsp]WHERE a.[key]='Az' AND b.[key]='Bw' AND c.[key]='Cv'
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]AND a.[id]=b.[id] AND a.[id]=c.[id]
但作为T-SQL的所谓“高手”可能会认为这种写法很“土”,也显得没有水平,所以会选择一些子查询和外连接的写法,按常理子查询的效率是比较高的:
[$nbsp][$nbsp][$nbsp]--语句3
[$nbsp][$nbsp][$nbsp][$nbsp]select distinct [id] from stress_test A where
[$nbsp][$nbsp][$nbsp][$nbsp]not exists (
[$nbsp][$nbsp][$nbsp][$nbsp]select 1 from
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp](select 'Az' as k union all select 'Bw' union all select 'Cv') B
[$nbsp][$nbsp][$nbsp][$nbsp]left join stress_test C on C.id=A.id and B.[k]=C.[key]
[$nbsp][$nbsp][$nbsp][$nbsp]where C.id is null)
[$nbsp][$nbsp][$nbsp]--语句4
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]select distinct a.id from stress_test a
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]where not exists
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]( select * from keytb c
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]where not exists
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]( select * from stress_test b
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]where
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]b.id = a.id
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]and
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp]c.kf1 = b.[key]
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp][$nbsp])
[$nbsp][$nbsp][$nbsp][$nbsp][$nbsp])
我们先分析这几条语句(针对5千8百万条数据进行分析):
请大家要非凡留心Estimated row count的值。
语句1:从执行规划中我们可以看出,MSSQLSERVER选择的索引优化非常有规律,先通过CLUSTERED INDEX筛选出符合[KEY]='Az'条件的ID,然后进行HASH MATCH,在找出ID相等的;依次类推最终检索到符合所有条件的记录。中间的Estimated row count的值都不大。
语句2:从执行规划中我们可以看出,是先通过CLUSTERED INDEX筛选出符合 [key]='Az' or [key]='Bw' or [key]='Cv' 符合所有条件的ID,然后分组进行2次HASH MATCH 所有的ID。我们可以看出Estimated row count的值是越来越少,从最初的369,262到最后排序的只有402。
语句3:从执行规划中我们可以看是非常复杂的,是先通过3组 通过CONSTANT SCAN和NON-CLUSTERED INDEX检索出符合 A.ID=C.ID AND [key]='**' 的记录3组,然后分组进行外键匹配,再将3组的数据合并,排序,然后再和一个NON-CLUSTERED INDEX检索出的记录集进行外键匹配,我们可以看出MSSQLSERVER会对所有的记录(5千万条)记录进行分组,Estimated row count的值是:58,720,000,所以这句T-SQL的瓶颈是对5千万条记录进行分组。
语句4:从执行规划中我们可以看和语句3有相似之处,都要对所有的记录(5千万条)记录进行分组,所以这是检索的瓶颈,而且使用的索引都是NON-CLUSTERED INDEX。
语句5:从执行规划中我们可以看出,先通过CLUSTERED INDEX检索出符合[Key]='Az'的记录集,然后进行HASH MATCH和SORTS,因为数量少所以是非常会的,在和通过NON-CLUSTERED INDEX检索[KEY]='Bw'的记录进行INNER JOIN,在和通过CLUSTERED INDEX检索[KEY]='Cv'的记录进行合并,最后是对4百万条数据进行分组检索,假如是6列,我们可以看出Estimated row count的值是递增,越来越大,最后的分组检索的Estimated row count的值是3.46E+15,这已经形成巨大的瓶颈。
我们可以先测试一下小的数据量(50000条);
大家可以下面测试脚本的:
[$nbsp][$nbsp][$nbsp]Select @maxgroup=500
[$nbsp][$nbsp][$nbsp]Select @maxLoop=100
----------------------------------------------------------------------
------------------语句 1----语句 2----语句 3----语句 4----语句 5----
5万(3列) 5ms 19ms 37ms 59ms 0ms
5万(6列) 1ms 26ms 36ms 36ms 1ms
从测试的的数据来看,语句5的效率是最高的,几乎没有花费时间,而语句2的效率只能说是一般。假如测试到这里就结束了,我们可以毫不犹豫的选择语句 5 :-(,继续进行下面的测试.....
我们测试百万条以上的记录:
1.先对1百万条记录进行测试(选取3列)
2.先对1百万条记录进行测试(选取6列)
3.对5千万条数据测试(选取3列)
4.对5千万条数据测试(选取6列)
统计表1:
----------------------------------------------------------------------
------------------语句 1----语句 2----语句 3----语句 4----语句 5----
1百万(3列) 0.77% 0.41% 49.30% 48.99% 0.52%
1百万(6列) 1.61% 0.81% 48.99% 47.44% 1.14%
5千万(3列) 0.14% 0.18% 48.88% 48.86% 1.93%
5千万(6列) 0.00% 0.00% 0.00% 0.00% 100.00%
统计表2:
----------------------------------------------------------------------
------------------语句 1----语句 2----语句 3----语句 4----语句 5----
1百万(3列) 9ms 22ms 723ms 753ms 4ms
1百万(6列) 15ms 38ms 764ms 773ms 11ms
5千万(3列) 575ms 262ms 110117ms 110601ms 12533ms
5千万(6列) 1070ms 576ms 107988ms 109704ms 10m以上
测试总结:(我们可以比较关注:语句 2和语句 5)
1.在1百万条记录的情况下,语句 5是最快的,但在5千万条记录下是最慢的。这说明INDEX的优化一定的情况下,数据量不同,检索的效率也是不同的。我们