首页 > 开发 > Java > 正文

Java ArrayList.add 的实现方法

2024-07-14 08:42:46
字体:
来源:转载
供稿:网友

ArrayList是平时相当常用的List实现, 其中boolean add(E e) 的实现比较直接:

/** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return <tt>true</tt> (as specified by {@link Collection#add}) */public boolean add(E e) {  ensureCapacityInternal(size + 1); // Increments modCount!!  elementData[size++] = e;  return true;}

有时候也使用 void add(int index, E element) 把元素插入到指定的index上. 在JDK中的实现是:

/** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */public void add(int index, E element) {  rangeCheckForAdd(index);  ensureCapacityInternal(size + 1); // Increments modCount!!  System.arraycopy(elementData, index, elementData, index + 1,           size - index);  elementData[index] = element;  size++;}

略有差别, 需要保证当前elementData 数组容量够用, 然后把从index处一直到尾部的数组元素都向后挪一位. 最后把要插入的元素赋给数组的index处.

一直以来, 我都认为 System.arraycopy 这个native方法, 它的c++实现是调用底层的memcpy, 直接方便, 效率也没问题.

但今天看了openJDK的源码发现并非如此.

以openJDK8u60 为例, 在objArrayKlass.cpp 中:

void ObjArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d,                int dst_pos, int length, TRAPS) { assert(s->is_objArray(), "must be obj array"); if (!d->is_objArray()) {  THROW(vmSymbols::java_lang_ArrayStoreException()); } // Check is all offsets and lengths are non negative if (src_pos < 0 || dst_pos < 0 || length < 0) {  THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Check if the ranges are valid if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())   || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {  THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Special case. Boundary cases must be checked first // This allows the following call: copy_array(s, s.length(), d.length(), 0). // This is correct, since the position is supposed to be an 'in between point', i.e., s.length(), // points to the right of the last element. if (length==0) {  return; } if (UseCompressedOops) {  narrowOop* const src = objArrayOop(s)->obj_at_addr<narrowOop>(src_pos);  narrowOop* const dst = objArrayOop(d)->obj_at_addr<narrowOop>(dst_pos);  do_copy<narrowOop>(s, src, d, dst, length, CHECK); } else {  oop* const src = objArrayOop(s)->obj_at_addr<oop>(src_pos);  oop* const dst = objArrayOop(d)->obj_at_addr<oop>(dst_pos);  do_copy<oop> (s, src, d, dst, length, CHECK); }}

可以看到copy_array在做了各种检查之后, 最终copy的部分在do_copy方法中, 而这个方法实现如下:

// Either oop or narrowOop depending on UseCompressedOops.template <class T> void ObjArrayKlass::do_copy(arrayOop s, T* src,                arrayOop d, T* dst, int length, TRAPS) { BarrierSet* bs = Universe::heap()->barrier_set(); // For performance reasons, we assume we are that the write barrier we // are using has optimized modes for arrays of references. At least one // of the asserts below will fail if this is not the case. assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt"); assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well."); if (s == d) {  // since source and destination are equal we do not need conversion checks.  assert(length > 0, "sanity check");  bs->write_ref_array_pre(dst, length);  Copy::conjoint_oops_atomic(src, dst, length); } else {  // We have to make sure all elements conform to the destination array  Klass* bound = ObjArrayKlass::cast(d->klass())->element_klass();  Klass* stype = ObjArrayKlass::cast(s->klass())->element_klass();  if (stype == bound || stype->is_subtype_of(bound)) {   // elements are guaranteed to be subtypes, so no check necessary   bs->write_ref_array_pre(dst, length);   Copy::conjoint_oops_atomic(src, dst, length);  } else {   // slow case: need individual subtype checks   // note: don't use obj_at_put below because it includes a redundant store check   T* from = src;   T* end = from + length;   for (T* p = dst; from < end; from++, p++) {    // XXX this is going to be slow.    T element = *from;    // even slower now    bool element_is_null = oopDesc::is_null(element);    oop new_val = element_is_null ? oop(NULL)                   : oopDesc::decode_heap_oop_not_null(element);    if (element_is_null ||      (new_val->klass())->is_subtype_of(bound)) {     bs->write_ref_field_pre(p, new_val);     *p = element;    } else {     // We must do a barrier to cover the partial copy.     const size_t pd = pointer_delta(p, dst, (size_t)heapOopSize);     // pointer delta is scaled to number of elements (length field in     // objArrayOop) which we assume is 32 bit.     assert(pd == (size_t)(int)pd, "length field overflow");     bs->write_ref_array((HeapWord*)dst, pd);     THROW(vmSymbols::java_lang_ArrayStoreException());     return;    }   }  } } bs->write_ref_array((HeapWord*)dst, length);}

可以看到, 在设定了heap barrier之后, 元素是在for循环中被一个个挪动的. 做的工作比我想象的要多.

如果有m个元素, 按照给定位置, 使用ArrayList.add(int,E)逐个插入到一个长度为n的ArrayList中, 复杂度应当是O(m*n), 或者O(m*(m+n)), 所以, 如果m和n都不小的话, 效率确实是不高的.

效率高一些的方法是, 建立m+n长度的数组或ArrayList, 在给定位置赋值该m个要插入的元素, 其他位置依次赋值原n长度List的元素. 这样时间复杂度应当是O(m+n).

还有, 在前面的实现中, 我们可以看到有对ensureCapacityInternal(int) 的调用. 这个保证数组容量的实现主要在:

/** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * * @param minCapacity the desired minimum capacity */private void grow(int minCapacity) {  // overflow-conscious code  int oldCapacity = elementData.length;  int newCapacity = oldCapacity + (oldCapacity >> 1);  if (newCapacity - minCapacity < 0)    newCapacity = minCapacity;  if (newCapacity - MAX_ARRAY_SIZE > 0)    newCapacity = hugeCapacity(minCapacity);  // minCapacity is usually close to size, so this is a win:  elementData = Arrays.copyOf(elementData, newCapacity);}

大家知道由于效率原因, ArrayList容量增长不是正好按照要求的容量minCapacity来设计的, 新容量计算的主要逻辑是: 如果要求容量比当前容量的1.5倍大, 就按照要求容量重新分配空间; 否则按当前容量1.5倍增加. 当然不能超出Integer.MAX_VALUE了. oldCapacity + (oldCapacity >> 1) 实际就是当前容量1.5倍, 等同于(int) (oldCapacity * 1.5), 但因这段不涉及浮点运算只是移位, 显然效率高不少.

所以如果ArrayList一个一个add元素的话, 容量是在不够的时候1.5倍增长的. 关于1.5这个数字, 或许是觉得2倍增长太快了吧. 也或许有实验数据的验证支撑.

关于这段代码中出现的Arrays.copyOf这个方法, 实现的是重新分配一段数组, 把elementData赋值给新分配的空间, 如果新分配的空间大, 则后面赋值null, 如果分配空间比当前数组小则截断. 底层还是调用的System.arraycopy.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VeVb武林网。


注:相关教程知识阅读请移步到JAVA教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表