Shazam算法采用傅里叶变换将时域信号转换为频域信号,并获得音频指纹,最后匹配指纹契合度来识别音频。
1、AudioSystem获取音频
奈奎斯特-香农采样定理告诉我们,为了能捕获人类能听到的声音频率,我们的采样速率必须是人类听觉范围的两倍。人类能听到的声音频率范围大约在20Hz到20000Hz之间,所以在录制音频的时候采样率大多是44100Hz。这是大多数标准MPEG-1 的采样率。44100这个值最初来源于索尼,因为它可以允许音频在修改过的视频设备上以25帧(PAL)或者30帧( NTSC)每秒进行录制,而且也覆盖了专业录音设备的20000Hz带宽。所以当你在选择录音的频率时,选择44100Hz就好了。
定义音频格式:
public static float sampleRate = 44100; public static int sampleSizeInBits = 16; public static int channels = 2; // double public static boolean signed = true; // Indicates whether the data is signed or unsigned public static boolean bigEndian = true; // Indicates whether the audio data is stored in big-endian or little-endian order public AudioFormat getFormat() { return new AudioFormat(sampleRate, sampleSizeInBits, channels, signed, bigEndian); }
调用麦克风获取音频,保存到out中
public static ByteArrayOutputStream out = new ByteArrayOutputStream();1 try { AudioFormat format = smartAuto.getFormat(); // Fill AudioFormat with the settings DataLine.Info info = new DataLine.Info(TargetDataLine.class, format); startTime = new Date().getTime(); System.out.println(startTime); SmartAuto.line = (TargetDataLine) AudioSystem.getLine(info); SmartAuto.line.open(format); SmartAuto.line.start(); new FileAnalysis().getDataToOut(""); while (smartAuto.running) { checkTime(startTime); } SmartAuto.line.stop(); SmartAuto.line.close(); } catch (Throwable e) { e.printStackTrace(); }
获取到的out数据需要通过傅里叶变换,从时域信号转换为频域信号。
傅里叶变换
public Complex[] fft(Complex[] x) { int n = x.length; // 因为exp(-2i*n*PI)=1,n=1时递归原点 if (n == 1){ return x; } // 如果信号数为奇数,使用dft计算 if (n % 2 != 0) { return dft(x); } // 提取下标为偶数的原始信号值进行递归fft计算 Complex[] even = new Complex[n / 2]; for (int k = 0; k < n / 2; k++) { even[k] = x[2 * k]; } Complex[] evenValue = fft(even); // 提取下标为奇数的原始信号值进行fft计算 // 节约内存 Complex[] odd = even; for (int k = 0; k < n / 2; k++) { odd[k] = x[2 * k + 1]; } Complex[] oddValue = fft(odd); // 偶数+奇数 Complex[] result = new Complex[n]; for (int k = 0; k < n / 2; k++) { // 使用欧拉公式e^(-i*2pi*k/N) = cos(-2pi*k/N) + i*sin(-2pi*k/N) double p = -2 * k * Math.PI / n; Complex m = new Complex(Math.cos(p), Math.sin(p)); result[k] = evenValue[k].add(m.multiply(oddValue[k])); // exp(-2*(k+n/2)*PI/n) 相当于 -exp(-2*k*PI/n),其中exp(-n*PI)=-1(欧拉公式); result[k + n / 2] = evenValue[k].subtract(m.multiply(oddValue[k])); } return result; }
计算out的频域值
private void setFFTResult(){ byte audio[] = SmartAuto.out.toByteArray(); final int totalSize = audio.length; System.out.println("totalSize = " + totalSize); int chenkSize = 4; int amountPossible = totalSize/chenkSize; //When turning into frequency domain we'll need complex numbers: SmartAuto.results = new Complex[amountPossible][]; DftOperate dfaOperate = new DftOperate(); //For all the chunks: for(int times = 0;times < amountPossible; times++) { Complex[] complex = new Complex[chenkSize]; for(int i = 0;i < chenkSize;i++) { //Put the time domain data into a complex number with imaginary part as 0: complex[i] = new Complex(audio[(times*chenkSize)+i], 0); } //Perform FFT analysis on the chunk: SmartAuto.results[times] = dfaOperate.fft(complex); } System.out.println("results = " + SmartAuto.results.toString()); }
总结
以上所述是小编给大家介绍的Java实现Shazam声音识别算法的实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对VeVb武林网网站的支持!
注:相关教程知识阅读请移步到JAVA教程频道。