首页 > 开发 > Java > 正文

Java和scala实现 Spark RDD转换成DataFrame的两种方法小结

2024-07-14 08:41:10
字体:
来源:转载
供稿:网友

一:准备数据源

在项目下新建一个student.txt文件,里面的内容为:

1,zhangsan,20 2,lisi,21 3,wanger,19 4,fangliu,18 

二:实现

Java版:

1.首先新建一个student的Bean对象,实现序列化和toString()方法,具体代码如下:

package com.cxd.sql;import java.io.Serializable;@SuppressWarnings("serial")public class Student implements Serializable { String sid; String sname; int sage; public String getSid() {  return sid; } public void setSid(String sid) {  this.sid = sid; } public String getSname() {  return sname; } public void setSname(String sname) {  this.sname = sname; } public int getSage() {  return sage; } public void setSage(int sage) {  this.sage = sage; } @Override public String toString() {  return "Student [sid=" + sid + ", sname=" + sname + ", sage=" + sage + "]"; } }		

2.转换,具体代码如下

package com.cxd.sql;import java.util.ArrayList;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.sql.Dataset;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.SaveMode;import org.apache.spark.sql.SparkSession;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructField;import org.apache.spark.sql.types.StructType;public class TxtToParquetDemo { public static void main(String[] args) {    SparkConf conf = new SparkConf().setAppName("TxtToParquet").setMaster("local");  SparkSession spark = SparkSession.builder().config(conf).getOrCreate();  reflectTransform(spark);//Java反射  dynamicTransform(spark);//动态转换 }  /**  * 通过Java反射转换  * @param spark  */ private static void reflectTransform(SparkSession spark) {  JavaRDD<String> source = spark.read().textFile("stuInfo.txt").javaRDD();    JavaRDD<Student> rowRDD = source.map(line -> {   String parts[] = line.split(",");   Student stu = new Student();   stu.setSid(parts[0]);   stu.setSname(parts[1]);   stu.setSage(Integer.valueOf(parts[2]));   return stu;  });    Dataset<Row> df = spark.createDataFrame(rowRDD, Student.class);  df.select("sid", "sname", "sage").  coalesce(1).write().mode(SaveMode.Append).parquet("parquet.res"); } /**  * 动态转换  * @param spark  */ private static void dynamicTransform(SparkSession spark) {  JavaRDD<String> source = spark.read().textFile("stuInfo.txt").javaRDD();    JavaRDD<Row> rowRDD = source.map( line -> {   String[] parts = line.split(",");   String sid = parts[0];   String sname = parts[1];   int sage = Integer.parseInt(parts[2]);      return RowFactory.create(     sid,     sname,     sage     );  });    ArrayList<StructField> fields = new ArrayList<StructField>();  StructField field = null;  field = DataTypes.createStructField("sid", DataTypes.StringType, true);  fields.add(field);  field = DataTypes.createStructField("sname", DataTypes.StringType, true);  fields.add(field);  field = DataTypes.createStructField("sage", DataTypes.IntegerType, true);  fields.add(field);    StructType schema = DataTypes.createStructType(fields);    Dataset<Row> df = spark.createDataFrame(rowRDD, schema);  df.coalesce(1).write().mode(SaveMode.Append).parquet("parquet.res1");     } }

scala版本:

import org.apache.spark.sql.SparkSessionimport org.apache.spark.sql.types.StringTypeimport org.apache.spark.sql.types.StructFieldimport org.apache.spark.sql.types.StructTypeimport org.apache.spark.sql.Rowimport org.apache.spark.sql.types.IntegerTypeobject RDD2Dataset {  case class Student(id:Int,name:String,age:Int) def main(args:Array[String]) {  val spark=SparkSession.builder().master("local").appName("RDD2Dataset").getOrCreate() import spark.implicits._ reflectCreate(spark) dynamicCreate(spark) }  /**	 * 通过Java反射转换	 * @param spark	 */ private def reflectCreate(spark:SparkSession):Unit={ import spark.implicits._ val stuRDD=spark.sparkContext.textFile("student2.txt") //toDF()为隐式转换 val stuDf=stuRDD.map(_.split(",")).map(parts⇒Student(parts(0).trim.toInt,parts(1),parts(2).trim.toInt)).toDF() //stuDf.select("id","name","age").write.text("result") //对写入文件指定列名 stuDf.printSchema() stuDf.createOrReplaceTempView("student") val nameDf=spark.sql("select name from student where age<20") //nameDf.write.text("result") //将查询结果写入一个文件 nameDf.show() }  /**	 * 动态转换	 * @param spark	 */ private def dynamicCreate(spark:SparkSession):Unit={ val stuRDD=spark.sparkContext.textFile("student.txt") import spark.implicits._ val schemaString="id,name,age" val fields=schemaString.split(",").map(fieldName => StructField(fieldName, StringType, nullable = true)) val schema=StructType(fields) val rowRDD=stuRDD.map(_.split(",")).map(parts⇒Row(parts(0),parts(1),parts(2))) val stuDf=spark.createDataFrame(rowRDD, schema)  stuDf.printSchema() val tmpView=stuDf.createOrReplaceTempView("student") val nameDf=spark.sql("select name from student where age<20") //nameDf.write.text("result") //将查询结果写入一个文件 nameDf.show() }}

注:

1.上面代码全都已经测试通过,测试的环境为spark2.1.0,jdk1.8。

2.此代码不适用于spark2.0以前的版本。

以上这篇Java和scala实现 Spark RDD转换成DataFrame的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持VeVb武林网。


注:相关教程知识阅读请移步到JAVA教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表