首页 > 开发 > Java > 正文

详解Java编写并运行spark应用程序的方法

2024-07-13 10:12:22
字体:
来源:转载
供稿:网友

我们首先提出这样一个简单的需求:

现在要分析某网站的访问日志信息,统计来自不同IP的用户访问的次数,从而通过Geo信息来获得来访用户所在国家地区分布状况。这里我拿我网站的日志记录行示例,如下所示:

121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"121.205.198.92 - - [21/Feb/2014:00:00:11 +0800] "POST /wp-comments-post.php HTTP/1.1" 302 26 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"121.205.198.92 - - [21/Feb/2014:00:00:12 +0800] "GET /archives/417.html/ HTTP/1.1" 301 26 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"121.205.198.92 - - [21/Feb/2014:00:00:12 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"121.205.241.229 - - [21/Feb/2014:00:00:13 +0800] "GET /archives/526.html HTTP/1.1" 200 12080 "http://shiyanjun.cn/archives/526.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"121.205.241.229 - - [21/Feb/2014:00:00:15 +0800] "POST /wp-comments-post.php HTTP/1.1" 302 26 "http://shiyanjun.cn/archives/526.html/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"

Java实现Spark应用程序(Application)

我们实现的统计分析程序,有如下几个功能点:

从HDFS读取日志数据文件

将每行的第一个字段(IP地址)抽取出来

统计每个IP地址出现的次数

根据每个IP地址出现的次数进行一个降序排序

根据IP地址,调用GeoIP库获取IP所属国家

打印输出结果,每行的格式:[国家代码] IP地址 频率

下面,看我们使用Java实现的统计分析应用程序代码,如下所示:

package org.shirdrn.spark.job;import java.io.File;import java.io.IOException;import java.util.Arrays;import java.util.Collections;import java.util.Comparator;import java.util.List;import java.util.regex.Pattern;import org.apache.commons.logging.Log;import org.apache.commons.logging.LogFactory;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.FlatMapFunction;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.shirdrn.spark.job.maxmind.Country;import org.shirdrn.spark.job.maxmind.LookupService;import scala.Serializable;import scala.Tuple2;public class IPAddressStats implements Serializable {  private static final long serialVersionUID = 8533489548835413763L;  private static final Log LOG = LogFactory.getLog(IPAddressStats.class);  private static final Pattern SPACE = Pattern.compile(" ");  private transient LookupService lookupService;  private transient final String geoIPFile;  public IPAddressStats(String geoIPFile) {   this.geoIPFile = geoIPFile;   try {    // lookupService: get country code from a IP address    File file = new File(this.geoIPFile);    LOG.info("GeoIP file: " + file.getAbsolutePath());    lookupService = new AdvancedLookupService(file, LookupService.GEOIP_MEMORY_CACHE);   } catch (IOException e) {    throw new RuntimeException(e);   }  }  @SuppressWarnings("serial")  public void stat(String[] args) {   JavaSparkContext ctx = new JavaSparkContext(args[0], "IPAddressStats",     System.getenv("SPARK_HOME"), JavaSparkContext.jarOfClass(IPAddressStats.class));   JavaRDD<String> lines = ctx.textFile(args[1], 1);   // splits and extracts ip address filed   JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {    @Override    public Iterable<String> call(String s) {     // 121.205.198.92 - - [21/Feb/2014:00:00:07 +0800] "GET /archives/417.html HTTP/1.1" 200 11465 "http://shiyanjun.cn/archives/417.html/" "Mozilla/5.0 (Windows NT 5.1; rv:11.0) Gecko/20100101 Firefox/11.0"     // ip address     return Arrays.asList(SPACE.split(s)[0]);    }   });   // map   JavaPairRDD<String, Integer> ones = words.map(new PairFunction<String, String, Integer>() {    @Override    public Tuple2<String, Integer> call(String s) {     return new Tuple2<String, Integer>(s, 1);    }   });   // reduce   JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {    @Override    public Integer call(Integer i1, Integer i2) {     return i1 + i2;    }   });   List<Tuple2<String, Integer>> output = counts.collect();   // sort statistics result by value   Collections.sort(output, new Comparator<Tuple2<String, Integer>>() {    @Override    public int compare(Tuple2<String, Integer> t1, Tuple2<String, Integer> t2) {     if(t1._2 < t2._2) {       return 1;     } else if(t1._2 > t2._2) {       return -1;     }     return 0;    }   });   writeTo(args, output);  }  private void writeTo(String[] args, List<Tuple2<String, Integer>> output) {   for (Tuple2<?, ?> tuple : output) {    Country country = lookupService.getCountry((String) tuple._1);    LOG.info("[" + country.getCode() + "] " + tuple._1 + "/t" + tuple._2);   }  }  public static void main(String[] args) {   // ./bin/run-my-java-example org.shirdrn.spark.job.IPAddressStats spark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat   if (args.length < 3) {    System.err.println("Usage: IPAddressStats <master> <inFile> <GeoIPFile>");    System.err.println(" Example: org.shirdrn.spark.job.IPAddressStats spark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat");    System.exit(1);   }   String geoIPFile = args[2];   IPAddressStats stats = new IPAddressStats(geoIPFile);   stats.stat(args);   System.exit(0);  }}

具体实现逻辑,可以参考代码中的注释。我们使用Maven管理构建Java程序,首先看一下我的pom配置中所依赖的软件包,如下所示:

<dependencies>   <dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-core_2.10</artifactId>    <version>0.9.0-incubating</version>   </dependency>   <dependency>    <groupId>log4j</groupId>    <artifactId>log4j</artifactId>    <version>1.2.16</version>   </dependency>   <dependency>    <groupId>dnsjava</groupId>    <artifactId>dnsjava</artifactId>    <version>2.1.1</version>   </dependency>   <dependency>    <groupId>commons-net</groupId>    <artifactId>commons-net</artifactId>    <version>3.1</version>   </dependency>   <dependency>    <groupId>org.apache.hadoop</groupId>    <artifactId>hadoop-client</artifactId>    <version>1.2.1</version>   </dependency>  </dependencies>

需要说明的是,当我们将程序在Spark集群上运行时,它要求我们的编写的Job能够进行序列化,如果某些字段不需要序列化或者无法序列化,可以直接使用transient修饰即可,如上面的属性lookupService没有实现序列化接口,使用transient使其不执行序列化,否则的话,可能会出现类似如下的错误:

14/03/10 22:34:06 INFO scheduler.DAGScheduler: Failed to run collect at IPAddressStats.java:76Exception in thread "main" org.apache.spark.SparkException: Job aborted: Task not serializable: java.io.NotSerializableException: org.shirdrn.spark.job.IPAddressStats  at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)  at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:794)  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:737)  at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:741)  at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$submitStage$4.apply(DAGScheduler.scala:740)  at scala.collection.immutable.List.foreach(List.scala:318)  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:740)  at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:569)  at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)  at akka.actor.ActorCell.invoke(ActorCell.scala:456)  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)  at akka.dispatch.Mailbox.run(Mailbox.scala:219)  at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)  at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)  at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)  at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)  at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)

在Spark集群上运行Java程序

这里,我使用了Maven管理构建Java程序,实现上述代码以后,使用Maven的maven-assembly-plugin插件,配置内容如下所示:

<plugin>  <artifactId>maven-assembly-plugin</artifactId>  <configuration>   <archive>    <manifest>     <mainClass>org.shirdrn.spark.job.UserAgentStats</mainClass>    </manifest>   </archive>   <descriptorRefs>    <descriptorRef>jar-with-dependencies</descriptorRef>   </descriptorRefs>   <excludes>    <exclude>*.properties</exclude>    <exclude>*.xml</exclude>   </excludes>  </configuration>  <executions>   <execution>    <id>make-assembly</id>    <phase>package</phase>    <goals>     <goal>single</goal>    </goals>   </execution>  </executions></plugin>

将相关依赖库文件都打进程序包里面,最后拷贝JAR文件到Linux系统下(不一定非要在Spark集群的Master节点上),保证该节点上Spark的环境变量配置正确即可看。Spark软件发行包解压缩后,可以看到脚本bin/run-example,我们可以直接修改该脚本,将对应的路径指向我们实现的Java程序包(修改变量EXAMPLES_DIR以及我们的JAR文件存放位置相关的内容),使用该脚本就可以运行,脚本内容如下所示:

cygwin=falsecase "`uname`" in CYGWIN*) cygwin=true;;esacSCALA_VERSION=2.10# Figure out where the Scala framework is installedFWDIR="$(cd `dirname $0`/..; pwd)"# Export this as SPARK_HOMEexport SPARK_HOME="$FWDIR"# Load environment variables from conf/spark-env.sh, if it existsif [ -e "$FWDIR/conf/spark-env.sh" ] ; then . $FWDIR/conf/spark-env.shfiif [ -z "$1" ]; then echo "Usage: run-example <example-class> [<args>]" >&2 exit 1fi# Figure out the JAR file that our examples were packaged into. This includes a bit of a hack# to avoid the -sources and -doc packages that are built by publish-local.EXAMPLES_DIR="$FWDIR"/java-examplesSPARK_EXAMPLES_JAR=""if [ -e "$EXAMPLES_DIR"/*.jar ]; then export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR"/*.jar`fiif [[ -z $SPARK_EXAMPLES_JAR ]]; then echo "Failed to find Spark examples assembly in $FWDIR/examples/target" >&2 echo "You need to build Spark with sbt/sbt assembly before running this program" >&2 exit 1fi# Since the examples JAR ideally shouldn't include spark-core (that dependency should be# "provided"), also add our standard Spark classpath, built using compute-classpath.sh.CLASSPATH=`$FWDIR/bin/compute-classpath.sh`CLASSPATH="$SPARK_EXAMPLES_JAR:$CLASSPATH"if $cygwin; then CLASSPATH=`cygpath -wp $CLASSPATH` export SPARK_EXAMPLES_JAR=`cygpath -w $SPARK_EXAMPLES_JAR`fi# Find java binaryif [ -n "${JAVA_HOME}" ]; then RUNNER="${JAVA_HOME}/bin/java"else if [ `command -v java` ]; then RUNNER="java" else echo "JAVA_HOME is not set" >&2 exit 1 fifi# Set JAVA_OPTS to be able to load native libraries and to set heap sizeJAVA_OPTS="$SPARK_JAVA_OPTS"JAVA_OPTS="$JAVA_OPTS -Djava.library.path=$SPARK_LIBRARY_PATH"# Load extra JAVA_OPTS from conf/java-opts, if it existsif [ -e "$FWDIR/conf/java-opts" ] ; then JAVA_OPTS="$JAVA_OPTS `cat $FWDIR/conf/java-opts`"fiexport JAVA_OPTSif [ "$SPARK_PRINT_LAUNCH_COMMAND" == "1" ]; then echo -n "Spark Command: " echo "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@" echo "========================================" echofiexec "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"

在Spark上运行我们开发的Java程序,执行如下命令:

cd /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1./bin/run-my-java-example org.shirdrn.spark.job.IPAddressStats spark://m1:7077 hdfs://m1:9000/user/shirdrn/wwwlog20140222.log /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.dat

我实现的程序类org.shirdrn.spark.job.IPAddressStats运行需要3个参数:

Spark集群主节点URL:例如我的是spark://m1:7077

输入文件路径:业务相关的,我这里是从HDFS上读取文件hdfs://m1:9000/user/shirdrn/wwwlog20140222.log

GeoIP库文件:业务相关的,用来计算IP地址所属国家的外部文件

如果程序没有错误,能够正常运行,控制台输出程序运行日志,示例如下所示:

14/03/10 22:17:24 INFO job.IPAddressStats: GeoIP file: /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/GeoIP_DATABASE.datSLF4J: Class path contains multiple SLF4J bindings.SLF4J: Found binding in [jar:file:/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar!/org/slf4j/impl/StaticLoggerBinder.class]SLF4J: Found binding in [jar:file:/home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/assembly/target/scala-2.10/spark-assembly_2.10-0.9.0-incubating-hadoop1.0.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]14/03/10 22:17:25 INFO slf4j.Slf4jLogger: Slf4jLogger started14/03/10 22:17:25 INFO Remoting: Starting remoting14/03/10 22:17:25 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@m1:57379]14/03/10 22:17:25 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@m1:57379]14/03/10 22:17:25 INFO spark.SparkEnv: Registering BlockManagerMaster14/03/10 22:17:25 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20140310221725-c1cb14/03/10 22:17:25 INFO storage.MemoryStore: MemoryStore started with capacity 143.8 MB.14/03/10 22:17:25 INFO network.ConnectionManager: Bound socket to port 45189 with id = ConnectionManagerId(m1,45189)14/03/10 22:17:25 INFO storage.BlockManagerMaster: Trying to register BlockManager14/03/10 22:17:25 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager m1:45189 with 143.8 MB RAM14/03/10 22:17:25 INFO storage.BlockManagerMaster: Registered BlockManager14/03/10 22:17:25 INFO spark.HttpServer: Starting HTTP Server14/03/10 22:17:25 INFO server.Server: jetty-7.x.y-SNAPSHOT14/03/10 22:17:25 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:4918614/03/10 22:17:25 INFO broadcast.HttpBroadcast: Broadcast server started at http://10.95.3.56:4918614/03/10 22:17:25 INFO spark.SparkEnv: Registering MapOutputTracker14/03/10 22:17:25 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-56c3e30d-a01b-4752-83d1-af1609ab237014/03/10 22:17:25 INFO spark.HttpServer: Starting HTTP Server14/03/10 22:17:25 INFO server.Server: jetty-7.x.y-SNAPSHOT14/03/10 22:17:25 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:5207314/03/10 22:17:26 INFO server.Server: jetty-7.x.y-SNAPSHOT14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage/rdd,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/storage,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/stage,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages/pool,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/stages,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/environment,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/executors,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/metrics/json,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/static,null}14/03/10 22:17:26 INFO handler.ContextHandler: started o.e.j.s.h.ContextHandler{/,null}14/03/10 22:17:26 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:404014/03/10 22:17:26 INFO ui.SparkUI: Started Spark Web UI at http://m1:404014/03/10 22:17:26 INFO spark.SparkContext: Added JAR /home/shirdrn/cloud/programs/spark-0.9.0-incubating-bin-hadoop1/java-examples/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar at http://10.95.3.56:52073/jars/spark-0.0.1-SNAPSHOT-jar-with-dependencies.jar with timestamp 139451504639614/03/10 22:17:26 INFO client.AppClient$ClientActor: Connecting to master spark://m1:7077...14/03/10 22:17:26 INFO storage.MemoryStore: ensureFreeSpace(60341) called with curMem=0, maxMem=15083765714/03/10 22:17:26 INFO storage.MemoryStore: Block broadcast_0 stored as values to memory (estimated size 58.9 KB, free 143.8 MB)14/03/10 22:17:26 INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20140310221726-000014/03/10 22:17:27 INFO client.AppClient$ClientActor: Executor added: app-20140310221726-0000/0 on worker-20140310221648-s1-52544 (s1:52544) with 1 cores14/03/10 22:17:27 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20140310221726-0000/0 on hostPort s1:52544 with 1 cores, 512.0 MB RAM14/03/10 22:17:27 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable14/03/10 22:17:27 WARN snappy.LoadSnappy: Snappy native library not loaded14/03/10 22:17:27 INFO client.AppClient$ClientActor: Executor updated: app-20140310221726-0000/0 is now RUNNING14/03/10 22:17:27 INFO mapred.FileInputFormat: Total input paths to process : 114/03/10 22:17:27 INFO spark.SparkContext: Starting job: collect at IPAddressStats.java:7714/03/10 22:17:27 INFO scheduler.DAGScheduler: Registering RDD 4 (reduceByKey at IPAddressStats.java:70)14/03/10 22:17:27 INFO scheduler.DAGScheduler: Got job 0 (collect at IPAddressStats.java:77) with 1 output partitions (allowLocal=false)14/03/10 22:17:27 INFO scheduler.DAGScheduler: Final stage: Stage 0 (collect at IPAddressStats.java:77)14/03/10 22:17:27 INFO scheduler.DAGScheduler: Parents of final stage: List(Stage 1)14/03/10 22:17:27 INFO scheduler.DAGScheduler: Missing parents: List(Stage 1)14/03/10 22:17:27 INFO scheduler.DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[4] at reduceByKey at IPAddressStats.java:70), which has no missing parents14/03/10 22:17:27 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from Stage 1 (MapPartitionsRDD[4] at reduceByKey at IPAddressStats.java:70)14/03/10 22:17:27 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 1 tasks14/03/10 22:17:28 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@s1:59233/user/Executor#-671170811] with ID 014/03/10 22:17:28 INFO scheduler.TaskSetManager: Starting task 1.0:0 as TID 0 on executor 0: s1 (PROCESS_LOCAL)14/03/10 22:17:28 INFO scheduler.TaskSetManager: Serialized task 1.0:0 as 2396 bytes in 5 ms14/03/10 22:17:29 INFO storage.BlockManagerMasterActor$BlockManagerInfo: Registering block manager s1:47282 with 297.0 MB RAM14/03/10 22:17:32 INFO scheduler.TaskSetManager: Finished TID 0 in 3376 ms on s1 (progress: 0/1)14/03/10 22:17:32 INFO scheduler.DAGScheduler: Completed ShuffleMapTask(1, 0)14/03/10 22:17:32 INFO scheduler.DAGScheduler: Stage 1 (reduceByKey at IPAddressStats.java:70) finished in 4.420 s14/03/10 22:17:32 INFO scheduler.DAGScheduler: looking for newly runnable stages14/03/10 22:17:32 INFO scheduler.DAGScheduler: running: Set()14/03/10 22:17:32 INFO scheduler.DAGScheduler: waiting: Set(Stage 0)14/03/10 22:17:32 INFO scheduler.DAGScheduler: failed: Set()14/03/10 22:17:32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 1.0 from pool14/03/10 22:17:32 INFO scheduler.DAGScheduler: Missing parents for Stage 0: List()14/03/10 22:17:32 INFO scheduler.DAGScheduler: Submitting Stage 0 (MapPartitionsRDD[6] at reduceByKey at IPAddressStats.java:70), which is now runnable14/03/10 22:17:32 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from Stage 0 (MapPartitionsRDD[6] at reduceByKey at IPAddressStats.java:70)14/03/10 22:17:32 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks14/03/10 22:17:32 INFO scheduler.TaskSetManager: Starting task 0.0:0 as TID 1 on executor 0: s1 (PROCESS_LOCAL)14/03/10 22:17:32 INFO scheduler.TaskSetManager: Serialized task 0.0:0 as 2255 bytes in 1 ms14/03/10 22:17:32 INFO spark.MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@s1:3353414/03/10 22:17:32 INFO spark.MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 120 bytes14/03/10 22:17:32 INFO scheduler.TaskSetManager: Finished TID 1 in 282 ms on s1 (progress: 0/1)14/03/10 22:17:32 INFO scheduler.DAGScheduler: Completed ResultTask(0, 0)14/03/10 22:17:32 INFO scheduler.DAGScheduler: Stage 0 (collect at IPAddressStats.java:77) finished in 0.314 s14/03/10 22:17:32 INFO scheduler.TaskSchedulerImpl: Remove TaskSet 0.0 from pool14/03/10 22:17:32 INFO spark.SparkContext: Job finished: collect at IPAddressStats.java:77, took 4.870958309 s14/03/10 22:17:32 INFO job.IPAddressStats: [CN] 58.246.49.218  31214/03/10 22:17:32 INFO job.IPAddressStats: [KR] 1.234.83.77  30014/03/10 22:17:32 INFO job.IPAddressStats: [CN] 120.43.11.16  21214/03/10 22:17:32 INFO job.IPAddressStats: [CN] 110.85.72.254  20714/03/10 22:17:32 INFO job.IPAddressStats: [CN] 27.150.229.134  18514/03/10 22:17:32 INFO job.IPAddressStats: [HK] 180.178.52.181  18114/03/10 22:17:32 INFO job.IPAddressStats: [CN] 120.37.210.212  18014/03/10 22:17:32 INFO job.IPAddressStats: [CN] 222.77.226.83  17614/03/10 22:17:32 INFO job.IPAddressStats: [CN] 120.43.11.205  16914/03/10 22:17:32 INFO job.IPAddressStats: [CN] 120.43.9.19  165...

我们也可以通过Web控制台来查看当前执行应用程序(Application)的状态信息,通过Master节点的8080端口(如:http://m1:8080/)就能看到集群的应用程序(Application)状态信息。

另外,需要说明的时候,如果在Unix环境下使用Eclipse使用Java开发Spark应用程序,也能够直接通过Eclipse连接Spark集群,并提交开发的应用程序,然后交给集群去处理。

总结

以上就是本文关于详解Java编写并运行spark应用程序的方法的全部内容,希望对大家有所帮助。有什么问题可以随时留言,小编会及时回复大家。


注:相关教程知识阅读请移步到JAVA教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表