首页 > 开发 > Java > 正文

java 矩阵乘法的mapreduce程序实现

2024-07-13 10:08:43
字体:
来源:转载
供稿:网友

javascript/56194.html">java 矩阵乘法的mapreduce程序实现

map函数:对于矩阵M中的每个元素m(ij),产生一系列的key-value对<(i,k),(M,j,m(ij))>

其中k=1,2.....知道矩阵N的总列数;对于矩阵N中的每个元素n(jk),产生一系列的key-value对<(i , k) , (N , j ,n(jk)>, 其中i=1,2.......直到i=1,2.......直到矩阵M的总列数。

map

package com.cb.matrix;import static org.mockito.Matchers.intThat;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapred.FileSplit;import org.apache.hadoop.mapreduce.Mapper;import com.sun.org.apache.bcel.internal.generic.NEW;public class MatrixMapper extends Mapper<Object, Text, Text, Text> { private Text map_key=new Text(); private Text map_value= new Text(); private int columnN; private int rowM; /** * 执行map()函数前先由conf.get()得到main函数中提供的必要变量 * 也就是从输入文件名中得到的矩阵维度信息 */  @Override protected void setup(Mapper<Object, Text, Text, Text>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration config=context.getConfiguration(); columnN=Integer.parseInt(config.get("columnN")); rowM =Integer.parseInt(config.get("rowM")); }  @Override protected void map(Object key, Text value, Mapper<Object, Text, Text, Text>.Context context)  throws IOException, InterruptedException { // TODO Auto-generated method stub //得到文件名,从而区分输入矩阵M和N FileSplit fileSplit=(FileSplit)context.getInputSplit(); String fileName=fileSplit.getPath().getName();  if (fileName.contains("M")) {  String[] tuple =value.toString().split(",");  int i =Integer.parseInt(tuple[0]);  String[] tuples=tuple[1].split("/t");  int j=Integer.parseInt(tuples[0]);  int Mij=Integer.parseInt(tuples[1]);  for(int k=1;k<columnN+1;k++){  map_key.set(i+","+k);  map_value.set("M"+","+j+","+Mij);  context.write(map_key, map_value);  }   } else if(fileName.contains("N")){  String[] tuple=value.toString().split(",");  int j=Integer.parseInt(tuple[0]);  String[] tuples =tuple[1].split("/t");  int k=Integer.parseInt(tuples[0]);  int Njk=Integer.parseInt(tuples[1]);  for(int i=1;i<rowM+1;i++){  map_key.set(i+","+k);  map_value.set("N"+","+j+","+Njk);  context.write(map_key, map_value);  } }  }}

reduce函数:对于每个键(i,k)相关联的值(M,j,m(ij))及(N,j,n(jk)),根据相同的j值将m(ij)和n(jk)分别存入不同的数组中,然后将俩者的第j个元素抽取出来分别相乘,最后相加,即可得到p(jk)的值。

reducer

package com.cb.matrix;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Reducer;public class MatrixReducer extends Reducer<Text, Text, Text, Text> { private int sum=0; private int columnM; @Override protected void setup(Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub Configuration conf =context.getConfiguration(); columnM=Integer.parseInt(conf.get("columnM")); } @Override protected void reduce(Text arg0, Iterable<Text> arg1, Reducer<Text, Text, Text, Text>.Context arg2)  throws IOException, InterruptedException { // TODO Auto-generated method stub int[] M=new int[columnM+1]; int[] N=new int[columnM+1];  for(Text val:arg1){  String[] tuple=val.toString().split(",");  if(tuple[0].equals("M")){  M[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);    }else{  N[Integer.parseInt(tuple[1])]=Integer.parseInt(tuple[2]);  }  for(int j=1;j<columnM+1;j++){  sum+=M[j]*N[j];  }  arg2.write(arg0, new Text(Integer.toString(sum)));  sum=0; } }}

 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!


注:相关教程知识阅读请移步到JAVA教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表