首页 > 开发 > Java > 正文

Java多线程并发编程(互斥锁Reentrant Lock)

2024-07-13 10:07:58
字体:
来源:转载
供稿:网友

Java 中的锁通常分为两种:

通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字。
java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。
本篇主要介绍 ReentrantLock(互斥锁)。

ReentrantLock(互斥锁)

ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

public ReentrantLock() {    sync = new NonfairSync();  }  public ReentrantLock(boolean fair) {    sync = fair ? new FairSync() : new NonfairSync();  }

由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。

一般使用

DEMO1:

public class Test {  private static class Counter {    private ReentrantLock mReentrantLock = new ReentrantLock();    public void count() {      mReentrantLock.lock();      try {        for (int i = 0; i < 6; i++) {          System.out.println(Thread.currentThread().getName() + ", i = " + i);        }      } finally {	      // 必须在 finally 释放锁        mReentrantLock.unlock();      }    }  }  private static class MyThread extends Thread {    private Counter mCounter;    public MyThread(Counter counter) {      mCounter = counter;    }    @Override    public void run() {      super.run();      mCounter.count();    }  }  public static void main(String[] var0) {    Counter counter = new Counter();    // 注:myThread1 和 myThread2 是调用同一个对象 counter    MyThread myThread1 = new MyThread(counter);    MyThread myThread2 = new MyThread(counter);    myThread1.start();    myThread2.start();  }}

DEMO1 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5Thread-1, i = 0Thread-1, i = 1Thread-1, i = 2Thread-1, i = 3Thread-1, i = 4Thread-1, i = 5

DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

DEMO2:

public class Test {  private static class Counter {    private ReentrantLock mReentrantLock = new ReentrantLock();    public void count() {      for (int i = 0; i < 6; i++) {        mReentrantLock.lock();        // 模拟耗时,突出线程是否阻塞        try{          Thread.sleep(100);          System.out.println(Thread.currentThread().getName() + ", i = " + i);        } catch (InterruptedException e) {          e.printStackTrace();        } finally {	        // 必须在 finally 释放锁          mReentrantLock.unlock();        }      }    }    public void doOtherThing(){      for (int i = 0; i < 6; i++) {        // 模拟耗时,突出线程是否阻塞        try {          Thread.sleep(100);        } catch (InterruptedException e) {          e.printStackTrace();        }        System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);      }    }  }    public static void main(String[] var0) {    final Counter counter = new Counter();    new Thread(new Runnable() {      @Override      public void run() {        counter.count();      }    }).start();    new Thread(new Runnable() {      @Override      public void run() {        counter.doOtherThing();      }    }).start();  }}

DEMO2 输出:

Thread-0, i = 0Thread-1 doOtherThing, i = 0Thread-0, i = 1Thread-1 doOtherThing, i = 1Thread-0, i = 2Thread-1 doOtherThing, i = 2Thread-0, i = 3Thread-1 doOtherThing, i = 3Thread-0, i = 4Thread-1 doOtherThing, i = 4Thread-0, i = 5Thread-1 doOtherThing, i = 5

DEMO3:

public class Test {  private static class Counter {    private ReentrantLock mReentrantLock = new ReentrantLock();    public void count() {      for (int i = 0; i < 6; i++) {        mReentrantLock.lock();        // 模拟耗时,突出线程是否阻塞        try{          Thread.sleep(100);          System.out.println(Thread.currentThread().getName() + ", i = " + i);        } catch (InterruptedException e) {          e.printStackTrace();        } finally {          // 必须在 finally 释放锁          mReentrantLock.unlock();        }      }    }    public void doOtherThing(){      mReentrantLock.lock();      try{        for (int i = 0; i < 6; i++) {          // 模拟耗时,突出线程是否阻塞          try {            Thread.sleep(100);          } catch (InterruptedException e) {            e.printStackTrace();          }          System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);        }      }finally {        mReentrantLock.unlock();      }    }  }  public static void main(String[] var0) {    final Counter counter = new Counter();    new Thread(new Runnable() {      @Override      public void run() {        counter.count();      }    }).start();    new Thread(new Runnable() {      @Override      public void run() {        counter.doOtherThing();      }    }).start();  }}

DEMO3 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5Thread-1 doOtherThing, i = 0Thread-1 doOtherThing, i = 1Thread-1 doOtherThing, i = 2Thread-1 doOtherThing, i = 3Thread-1 doOtherThing, i = 4Thread-1 doOtherThing, i = 5

结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。

可终止等待

DEMO4:

public class Test {  static final int TIMEOUT = 300;  private static class Counter {    private ReentrantLock mReentrantLock = new ReentrantLock();    public void count() {      try{        //lock() 不可中断        mReentrantLock.lock();        // 模拟耗时,突出线程是否阻塞        for (int i = 0; i < 6; i++) {          long startTime = System.currentTimeMillis();          while (true) {            if (System.currentTimeMillis() - startTime > 100)              break;          }          System.out.println(Thread.currentThread().getName() + ", i = " + i);        }      } finally {        // 必须在 finally 释放锁        mReentrantLock.unlock();      }    }    public void doOtherThing(){      try{        //lockInterruptibly() 可中断,若线程没有中断,则获取锁        mReentrantLock.lockInterruptibly();        for (int i = 0; i < 6; i++) {          // 模拟耗时,突出线程是否阻塞          long startTime = System.currentTimeMillis();          while (true) {            if (System.currentTimeMillis() - startTime > 100)              break;          }          System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);        }      } catch (InterruptedException e) {        System.out.println(Thread.currentThread().getName() + " 中断 ");      }finally {        // 若当前线程持有锁,则释放        if(mReentrantLock.isHeldByCurrentThread()){          mReentrantLock.unlock();        }      }    }  }  public static void main(String[] var0) {    final Counter counter = new Counter();    new Thread(new Runnable() {      @Override      public void run() {        counter.count();      }    }).start();    Thread thread2 = new Thread(new Runnable() {      @Override      public void run() {        counter.doOtherThing();      }    });    thread2.start();    long start = System.currentTimeMillis();    while (true){      if (System.currentTimeMillis() - start > TIMEOUT) {        // 若线程还在运行,尝试中断        if(thread2.isAlive()){          System.out.println(" 不等了,尝试中断 ");          thread2.interrupt();        }        break;      }    }  }}

DEMO4 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2不等了,尝试中断Thread-1 中断Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 TIMEOUT 改成 3000ms,输出结果:(正常运行)

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5Thread-1 doOtherThing, i = 0Thread-1 doOtherThing, i = 1Thread-1 doOtherThing, i = 2Thread-1 doOtherThing, i = 3Thread-1 doOtherThing, i = 4Thread-1 doOtherThing, i = 5

定时锁

DEMO5:

public class Test {  static final int TIMEOUT = 3000;  private static class Counter {    private ReentrantLock mReentrantLock = new ReentrantLock();    public void count() {      try{        //lock() 不可中断        mReentrantLock.lock();        // 模拟耗时,突出线程是否阻塞        for (int i = 0; i < 6; i++) {          long startTime = System.currentTimeMillis();          while (true) {            if (System.currentTimeMillis() - startTime > 100)              break;          }          System.out.println(Thread.currentThread().getName() + ", i = " + i);        }      } finally {        // 必须在 finally 释放锁        mReentrantLock.unlock();      }    }    public void doOtherThing(){      try{        //tryLock(long timeout, TimeUnit unit) 尝试获得锁        boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);        System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);        if(isLock){          for (int i = 0; i < 6; i++) {            // 模拟耗时,突出线程是否阻塞            long startTime = System.currentTimeMillis();            while (true) {              if (System.currentTimeMillis() - startTime > 100)                break;            }            System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);          }        }else{          System.out.println(Thread.currentThread().getName() + " timeout");        }      } catch (InterruptedException e) {        System.out.println(Thread.currentThread().getName() + " 中断 ");      }finally {        // 若当前线程持有锁,则释放        if(mReentrantLock.isHeldByCurrentThread()){          mReentrantLock.unlock();        }      }    }  }  public static void main(String[] var0) {    final Counter counter = new Counter();    new Thread(new Runnable() {      @Override      public void run() {        counter.count();      }    }).start();    Thread thread2 = new Thread(new Runnable() {      @Override      public void run() {        counter.doOtherThing();      }    });    thread2.start();  }}

DEMO5 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-1 isLock:falseThread-1 timeoutThread-0, i = 3Thread-0, i = 4Thread-0, i = 5

tryLock() 尝试获得锁,tryLock(long timeout, TimeUnit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之间如何选择?

ReentrantLock 在性能上 比 synchronized 更胜一筹。

ReentrantLock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。
synchronized 隐式自动释放锁,使用方便。

ReentrantLock 扩展性好,可中断锁,定时锁,自由控制。
synchronized 一但进入阻塞等待,则无法中断等待。

 

注:相关教程知识阅读请移步到JAVA教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表