此处需要pip install pretrainedmodels
"""Finetuning Torchvision Models"""from __future__ import print_function from __future__ import divisionimport torchimport torch.nn as nnimport torch.optim as optimimport numpy as npimport torchvisionfrom torchvision import datasets, models, transformsimport matplotlib.pyplot as pltimport timeimport osimport copyimport argparseimport pretrainedmodels.models.resnext as resnextprint("PyTorch Version: ",torch.__version__)print("Torchvision Version: ",torchvision.__version__)# Top level data directory. Here we assume the format of the directory conforms # to the ImageFolder structure#data_dir = "./data/hymenoptera_data"data_dir = "/media/dell/dell/data/13/"# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]model_name = "resnext"# Number of classes in the datasetnum_classes = 171# Batch size for training (change depending on how much memory you have)batch_size = 16# Number of epochs to train for num_epochs = 1000# Flag for feature extracting. When False, we finetune the whole model, # when True we only update the reshaped layer paramsfeature_extract = False# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多parser = argparse.ArgumentParser(description='PyTorch seresnet')parser.add_argument('--outf', default='/home/dell/Desktop/zhou/train7', help='folder to output images and model checkpoints') #输出结果保存路径parser.add_argument('--net', default='/home/dell/Desktop/zhou/train7/resnext.pth', help="path to net (to continue training)") #恢复训练时的模型路径args = parser.parse_args()def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):#def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,scheduler, is_inception=False): since = time.time() val_acc_history = [] best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 print("Start Training, resnext!") # 定义遍历数据集的次数 with open("/home/dell/Desktop/zhou/train7/acc.txt", "w") as f1: with open("/home/dell/Desktop/zhou/train7/log.txt", "w")as f2: for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch+1, num_epochs)) print('*' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': #scheduler.step() model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): # Get model outputs and calculate loss # Special case for inception because in training it has an auxiliary output. In train # mode we calculate the loss by summing the final output and the auxiliary output # but in testing we only consider the final output. if is_inception and phase == 'train': # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4*loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) f2.write('/n') f2.flush() # deep copy the model if phase == 'val': if (epoch+1)%5==0: #print('Saving model......') torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1)) f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, 100*epoch_acc)) f1.write('/n') f1.flush() if phase == 'val' and epoch_acc > best_acc: f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt", "w") f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc)) f3.close() best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == 'val': val_acc_history.append(epoch_acc) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model, val_acc_historydef set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = Falsedef initialize_model(model_name, num_classes, feature_extract, use_pretrained=True): # Initialize these variables which will be set in this if statement. Each of these # variables is model specific. model_ft = None input_size = 0 if model_name == "resnet": """ Resnet18 """ model_ft = models.resnet18(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "alexnet": """ Alexnet """ model_ft = models.alexnet(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes) input_size = 224 elif model_name == "vgg": """ VGG11_bn """ model_ft = models.vgg11_bn(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes) input_size = 224 elif model_name == "squeezenet": """ Squeezenet """ model_ft = models.squeezenet1_0(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1)) model_ft.num_classes = num_classes input_size = 224 elif model_name == "densenet": """ Densenet """ model_ft = models.densenet121(pretrained=use_pretrained) set_parameter_requires_grad(model_ft, feature_extract) num_ftrs = model_ft.classifier.in_features model_ft.classifier = nn.Linear(num_ftrs, num_classes) input_size = 224 elif model_name == "resnext": """ resnext Be careful, expects (3,224,224) sized images """ model_ft = resnext.resnext101_64x4d(num_classes=1000, pretrained='imagenet') set_parameter_requires_grad(model_ft, feature_extract) model_ft.last_linear = nn.Linear(2048, num_classes) #pre='/home/dell/Desktop/zhou/train6/inception_009.pth' #model_ft.load_state_dict(torch.load(pre)) input_size = 224 else: print("Invalid model name, exiting...") exit() return model_ft, input_size# Initialize the model for this runmodel_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)# Print the model we just instantiated#print(model_ft) data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(input_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(input_size), transforms.CenterCrop(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]),}print("Initializing Datasets and Dataloaders...")# Create training and validation datasetsimage_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}# Create training and validation dataloadersdataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}# Detect if we have a GPU availabledevice = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")#we='/home/dell/Desktop/dj/inception_050.pth'#model_ft.load_state_dict(torch.load(we))#diaoyong# Send the model to GPUmodel_ft = model_ft.to(device)params_to_update = model_ft.parameters()print("Params to learn:")if feature_extract: params_to_update = [] for name,param in model_ft.named_parameters(): if param.requires_grad == True: params_to_update.append(param) print("/t",name)else: for name,param in model_ft.named_parameters(): if param.requires_grad == True: print("/t",name)# Observe that all parameters are being optimizedoptimizer_ft = optim.SGD(params_to_update, lr=0.01, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochs#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)# Setup the loss fxncriterion = nn.CrossEntropyLoss()print(model_ft)# Train and evaluatemodel_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=False)
新闻热点
疑难解答