首页 > 网站 > 帮助中心 > 正文

关于ResNeXt网络的pytorch实现

2024-07-09 22:43:06
字体:
来源:转载
供稿:网友

此处需要pip install pretrainedmodels

"""Finetuning Torchvision Models"""from __future__ import print_function from __future__ import divisionimport torchimport torch.nn as nnimport torch.optim as optimimport numpy as npimport torchvisionfrom torchvision import datasets, models, transformsimport matplotlib.pyplot as pltimport timeimport osimport copyimport argparseimport pretrainedmodels.models.resnext as resnextprint("PyTorch Version: ",torch.__version__)print("Torchvision Version: ",torchvision.__version__)# Top level data directory. Here we assume the format of the directory conforms #  to the ImageFolder structure#data_dir = "./data/hymenoptera_data"data_dir = "/media/dell/dell/data/13/"# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]model_name = "resnext"# Number of classes in the datasetnum_classes = 171# Batch size for training (change depending on how much memory you have)batch_size = 16# Number of epochs to train for num_epochs = 1000# Flag for feature extracting. When False, we finetune the whole model, #  when True we only update the reshaped layer paramsfeature_extract = False# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多parser = argparse.ArgumentParser(description='PyTorch seresnet')parser.add_argument('--outf', default='/home/dell/Desktop/zhou/train7', help='folder to output images and model checkpoints') #输出结果保存路径parser.add_argument('--net', default='/home/dell/Desktop/zhou/train7/resnext.pth', help="path to net (to continue training)") #恢复训练时的模型路径args = parser.parse_args()def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):#def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,scheduler, is_inception=False):  since = time.time()  val_acc_history = []    best_model_wts = copy.deepcopy(model.state_dict())  best_acc = 0.0  print("Start Training, resnext!") # 定义遍历数据集的次数  with open("/home/dell/Desktop/zhou/train7/acc.txt", "w") as f1:    with open("/home/dell/Desktop/zhou/train7/log.txt", "w")as f2:      for epoch in range(num_epochs):        print('Epoch {}/{}'.format(epoch+1, num_epochs))        print('*' * 10)        # Each epoch has a training and validation phase        for phase in ['train', 'val']:          if phase == 'train':            #scheduler.step()            model.train() # Set model to training mode          else:            model.eval()  # Set model to evaluate mode              running_loss = 0.0          running_corrects = 0              # Iterate over data.          for inputs, labels in dataloaders[phase]:            inputs = inputs.to(device)            labels = labels.to(device)                # zero the parameter gradients            optimizer.zero_grad()                # forward            # track history if only in train            with torch.set_grad_enabled(phase == 'train'):              # Get model outputs and calculate loss              # Special case for inception because in training it has an auxiliary output. In train              #  mode we calculate the loss by summing the final output and the auxiliary output              #  but in testing we only consider the final output.              if is_inception and phase == 'train':                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958                outputs, aux_outputs = model(inputs)                loss1 = criterion(outputs, labels)                loss2 = criterion(aux_outputs, labels)                loss = loss1 + 0.4*loss2              else:                outputs = model(inputs)                loss = criterion(outputs, labels)                  _, preds = torch.max(outputs, 1)                  # backward + optimize only if in training phase              if phase == 'train':                loss.backward()                optimizer.step()                # statistics            running_loss += loss.item() * inputs.size(0)            running_corrects += torch.sum(preds == labels.data)          epoch_loss = running_loss / len(dataloaders[phase].dataset)          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)              print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))          f2.write('/n')          f2.flush()                     # deep copy the model          if phase == 'val':            if (epoch+1)%5==0:              #print('Saving model......')              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, 100*epoch_acc))            f1.write('/n')            f1.flush()          if phase == 'val' and epoch_acc > best_acc:            f3 = open("/home/dell/Desktop/zhou/train7/best_acc.txt", "w")            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,100*epoch_acc))            f3.close()            best_acc = epoch_acc            best_model_wts = copy.deepcopy(model.state_dict())          if phase == 'val':            val_acc_history.append(epoch_acc)  time_elapsed = time.time() - since  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))  print('Best val Acc: {:4f}'.format(best_acc))  # load best model weights  model.load_state_dict(best_model_wts)  return model, val_acc_historydef set_parameter_requires_grad(model, feature_extracting):  if feature_extracting:    for param in model.parameters():      param.requires_grad = Falsedef initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):  # Initialize these variables which will be set in this if statement. Each of these  #  variables is model specific.  model_ft = None  input_size = 0  if model_name == "resnet":    """ Resnet18    """    model_ft = models.resnet18(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.fc.in_features    model_ft.fc = nn.Linear(num_ftrs, num_classes)    input_size = 224  elif model_name == "alexnet":    """ Alexnet    """    model_ft = models.alexnet(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.classifier[6].in_features    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)    input_size = 224  elif model_name == "vgg":    """ VGG11_bn    """    model_ft = models.vgg11_bn(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.classifier[6].in_features    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)    input_size = 224  elif model_name == "squeezenet":    """ Squeezenet    """    model_ft = models.squeezenet1_0(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))    model_ft.num_classes = num_classes    input_size = 224  elif model_name == "densenet":    """ Densenet    """    model_ft = models.densenet121(pretrained=use_pretrained)    set_parameter_requires_grad(model_ft, feature_extract)    num_ftrs = model_ft.classifier.in_features    model_ft.classifier = nn.Linear(num_ftrs, num_classes)     input_size = 224  elif model_name == "resnext":    """ resnext    Be careful, expects (3,224,224) sized images     """    model_ft = resnext.resnext101_64x4d(num_classes=1000, pretrained='imagenet')    set_parameter_requires_grad(model_ft, feature_extract)    model_ft.last_linear = nn.Linear(2048, num_classes)       #pre='/home/dell/Desktop/zhou/train6/inception_009.pth'    #model_ft.load_state_dict(torch.load(pre))    input_size = 224  else:    print("Invalid model name, exiting...")    exit()    return model_ft, input_size# Initialize the model for this runmodel_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)# Print the model we just instantiated#print(model_ft) data_transforms = {  'train': transforms.Compose([    transforms.RandomResizedCrop(input_size),    transforms.RandomHorizontalFlip(),    transforms.ToTensor(),    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  ]),  'val': transforms.Compose([    transforms.Resize(input_size),    transforms.CenterCrop(input_size),    transforms.ToTensor(),    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  ]),}print("Initializing Datasets and Dataloaders...")# Create training and validation datasetsimage_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}# Create training and validation dataloadersdataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}# Detect if we have a GPU availabledevice = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")#we='/home/dell/Desktop/dj/inception_050.pth'#model_ft.load_state_dict(torch.load(we))#diaoyong# Send the model to GPUmodel_ft = model_ft.to(device)params_to_update = model_ft.parameters()print("Params to learn:")if feature_extract:  params_to_update = []  for name,param in model_ft.named_parameters():    if param.requires_grad == True:      params_to_update.append(param)      print("/t",name)else:  for name,param in model_ft.named_parameters():    if param.requires_grad == True:      print("/t",name)# Observe that all parameters are being optimizedoptimizer_ft = optim.SGD(params_to_update, lr=0.01, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochs#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)# Setup the loss fxncriterion = nn.CrossEntropyLoss()print(model_ft)# Train and evaluatemodel_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=False)
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表