首页 > 学院 > 操作系统 > 正文

Python大数据处理模块Pandas

2024-06-28 16:03:15
字体:
来源:转载
供稿:网友

Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列

读取数据

Pandas使用函数read_csv()来读取csv文件

复制代码

import pandasfood_info = ('food_info.csv')PRint(type(food_info))
# 输出:<class 'pandas.core.frame.DataFrame'> 可见读取后变成一个DataFrame变量

复制代码

 

该文件的内容如下:

图片3

 

使用函数head( m )来读取前m条数据,如果没有参数m,默认读取前五条数据

first_rows = food_info.head()first_rows = food_info.head(3)

由于DataFrame包含了很多的行和列,

Pandas使用省略号(...)来代替显示全部的行和列,可以使用colums属性来显示全部的列名

复制代码

print(food_info.columns)

# 输出:输出全部的列名,而不是用省略号代替

Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)', 'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)', 'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)', 'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)', 'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg', 'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)', 'Cholestrl_(mg)'], dtype='object')

复制代码

可以使用tolist()函数转化为list

food_info.columns.tolist()

与Numpy一样,用shape属性来显示数据的格式

dimensions = food_info.shapeprint(dimensions)print(dimensions)​
输出:(8618,36) ,其中dimensions[0]为8618,dimensions[1]为36

 

与Numpy一样,用dtype属性来显示数据类型,Pandas主要有以下几种dtype:

object -- 代表了字符串类型

int -- 代表了整型

float -- 代表了浮点数类型

datetime -- 代表了时间类型

bool -- 代表了布尔类型

 

当读取了一个文件之后,Pandas会通过分析值来推测每一列的数据类型

复制代码

print()

输出:每一列对应的数据类型

NDB_No            int64

Shrt_Desc           object

Water_(g)           float64

Energ_Kcal          int64

Protein_(g)          float64

...

索引

读取了文件后,Pandas会把文件的一行作为列的索引标签,使用行数字作为行的索引标签

图片4

注意,行标签是从数字0开始的

Pandas使用Series数据结构来表示一行或一列的数据,类似于Numpy使用向量来表示数据。Numpy只能使用数字来索引,而Series可以使用非数字来索引数据,当你选择返回一行数据的时候,Series并不仅仅返回该行的数据,同时还有每一列的标签的名字。

譬如要返回文件的第一行数据,Numpy就会返回一个列表(但你可能不知道每一个数字究竟代表了什么)

图片5

而Pandas则会同时把每一列的标签名返回(此时就很清楚数据的意思了)

图片6

 

选择数据

Pandas使用loc[]方法来选择行的数据

复制代码

# 选择单行数据:food_info.loc[0]   # 选择行标号为0的数据,即第一行数据food_info.loc[6]   # 选择行标号为6的数据,即第七行数据# 选择多行数据:food_info.loc[3:6] # 使用了切片,注意:由于这里使用loc[]函数,所以返回的是行标号为3,4,5,6的数据,与python的切片不同的是这里会返回最后的标号代表的数据,但也可以使用python的切片方法:food_info[3:7]food_info.loc[[2,5,10]] # 返回行标号为2,5,10三行数据练习:返回文件的最后五行方法一:length = food_info.shape[0]last_rows = food_info.loc[length-5:length-1]方法二:num_rows = food_info.shape[0]last_rows = food_info[num_rows-5:num_rows]Pandas直接把列名称填充就能返回该列的数据ndb_col = food_info["NDB_No"] # 返回列名称为NDB_No的那一列的数据zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]] # 返回两列数据

复制代码

 

简单运算

现在要按照如下公式计算所有食物的健康程度,并按照降序的方式排列结果:

Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))

对DataFrame中的某一列数据进行算术运算,其实是对该列中的所有元素进行逐一的运算,譬如:

water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]

原理:

图片7

由于每一列的数据跨度太大,有的数据是从0到100000,而有的数据是从0到10,所以为了尽量减少数据尺度对运算结果的影响,采取最简单的方法来规范化数据,那就是将每个数值都除以该列的最大值,从而使所有数据都处于0和1之间。其中max()函数用来获取该列的最大值.

复制代码

food_info['Normalized_Protein'] = food_info['Protein_(g)'] / food_info['Protein_(g)'].max()food_info['Normalized_Fat'] = food_info['Lipid_Tot_(g)'] / food_info['Lipid_Tot_(g)'].max()food_info['Norm_Nutr_Index'] = food_info["Normalized_Protein"] * 2 - food_info["Normalized_Fat"] * 0.75注意:上面的两个语句已经在原来的DataFrame中添加了三列,列名分别为Normalized_Protein和Normalized_Fat,Norm_Nutr_Index。只需要使用中括号和赋值符就能添加新列,类似于字典对DataFrame的某一列数据排序,只需要使用函数sort()即可food_info.sort("Sodium_(mg)") # 函数参数为列名,默认是按照升序排序,同时返回一个新的DataFramefood_info.sort("Norm_Nutr_Index", inplace=True, ascending=False ) # 通过inplace参数来控制在原表排序,而不是返回一个新的对象;ascending参数用来控制是否升序排序

import pandas as pd

read_csv()

读写csv数据

df = pd.read_csv(path): 读入csv文件,形成一个数据框(data.frame)

df = pd.read_csv(path, header=None) 不要把第一行作为header

to_csv()

* 注意,默认会将第一行作为header,并且默认会添加index,所以不需要的话需要手动禁用 *

df.to_csv(path, header=False, index=False)

数据框操作

df.head(1) 读取头几条数据

df.tail(1) 读取后几条数据

df[‘date’] 获取数据框的date列

df.head(1)[‘date’] 获取第一行的date列

df.head(1)[‘date’][0] 获取第一行的date列的元素值

sum(df[‘ability’]) 计算整个列的和

df[df[‘date’] == ‘20161111’] 获取符合这个条件的行

df[df[‘date’] == ‘20161111’].index[0] 获取符合这个条件的行的行索引的值

df.iloc[1] 获取第二行

df.iloc[1][‘test2’] 获取第二行的test2值

10 mins to pandas df.index 获取行的索引

df.index[0] 获取第一个行索引

df.index[-1] 获取最后一个行索引,只是获取索引值

df.columns 获取列标签

df[0:2] 获取第1到第2行,从0开始,不包含末端

df.loc[1] 获取第二行

df.loc[:,’test1’] 获取test1的那一列,这个冒号的意思是所有行,逗号表示行与列的区分

df.loc[:,[‘test1’,’test2’]] 获取test1列和test2列的数据

df.loc[1,[‘test1’,’test2’]] 获取第二行的test1和test2列的数据

df.at[1,’test1’] 表示取第二行,test1列的数据,和上面的方法类似

df.iloc[0] 获取第一行

df.iloc[0:2,0:2] 获取前两行前两列的数据

df.iloc[[1,2,4],[0,2]] 获取第1,2,4行中的0,2列的数据

(df[2] > 1).any() 对于Series应用any()方法来判断是否有符合条件的

一、            创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

4、查看不同列的数据类型:

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

二、            查看数据

详情请参阅:Basics Section

 

1、  查看frame中头部和尾部的行:

2、  显示索引、列和底层的numpy数据:

3、  describe()函数对于数据的快速统计汇总:

4、  对数据的转置:

5、  按轴进行排序

6、  按值进行排序

三、            选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。

l  获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A:

2、 通过[]进行选择,这将会对行进行切片

l  通过标签选择

1、 使用标签来获取一个交叉的区域

2、 通过标签来在多个轴上进行选择

3、 标签切片

4、 对于返回的对象进行维度缩减

5、 获取一个标量

6、 快速访问一个标量(与上一个方法等价)

l  通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

2、 通过数值进行切片,与numpy/python中的情况类似

3、 通过指定一个位置的列表,与numpy/python中的情况类似

4、 对行进行切片

5、 对列进行切片

6、 获取特定的值

l  布尔索引

1、 使用一个单独列的值来选择数据:

2、 使用where操作来选择数据:

3、 使用isin()方法来过滤:

 

l  设置

1、 设置一个新的列:

2、 通过标签设置新的值:

3、 通过位置设置新的值:

4、 通过一个numpy数组设置一组新值:

上述操作结果如下:

5、 通过where操作来设置新的值:

四、            缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

2、  去掉包含缺失值的行:

3、  对缺失值进行填充:

4、  对数据进行布尔填充:

五、            相关操作

详情请参与 Basic Section On Binary Ops

统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

2、  在其他轴上进行相同的操作:

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

Apply

1、  对数据应用函数:

直方图

具体请参照:Histogramming and Discretization

字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

六、            合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

Concat

Join 类似于SQL类型的合并,具体请参阅:Database style joining

Append 将一行连接到一个DataFrame上,具体请参阅Appending:

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

(Splitting)按照一些规则将数据分为不同的组;

(Applying)对于每组数据分别执行一个函数;

(Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

1、  分组并对每个分组执行sum函数:

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

八、            Reshaping

详情请参阅 Hierarchical Indexing 和 Reshaping。

Stack

数据透视表,详情请参阅:Pivot Tables.

可以从这个数据中轻松的生成数据透视表:

九、            时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。

1、  时区表示:

2、  时区转换:

3、  时间跨度转换:

4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。

十、            Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introduction和API documentation。

1、  将原始的grade转换为Categorical数据类型:

2、  将Categorical类型数据重命名为更有意义的名称:

3、  对类别进行重新排序,增加缺失的类别:

4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

5、  对Categorical列进行排序时存在空的类别:

十一、           画图

具体文档参看:Plotting docs

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

十二、           导入和保存数据

CSV,参考:Writing to a csv file

1、  写入csv文件:

2、  从csv文件中读取:

HDF5,参考:HDFStores

1、  写入HDF5存储:

2、  从HDF5存储中读取:

Excel,参考:MS Excel

1、  写入excel文件:

2、  从excel文件中读取:


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表