首页 > 数据库 > PostgreSQL > 正文

在PostgreSQL的基础上创建一个MongoDB的副本的教程

2020-10-29 21:49:53
字体:
来源:转载
供稿:网友

我有一个偷懒的想法。这个好点子该如何开始呢?好吧,这是一个恰如其分的小疯狂:为什么不直接在Postgres的基础上建立我们自己的MongoDB版本呢?这听起来有点牵强附会,但却简单而实在。

当NoSQL运动风生水起的时候,Postgres社区没有干坐着摆弄他们的大拇指。他们持续开发,贯穿整个Postgres的生态系统,几个突出的功能吸引了我的眼球:整合JSON支持和PLV8。PLV8把V8 Javascript引擎引入到Postgres,他让Javascript成为一个第一类别的语言(first-class language)。拥有JSON类型让它能更容易地处理JSON(这很有效)。

开始前需要做的准备:

  •     Postgres 9.2+ (as of this blog entry, 9.2 is in beta) - http://www.postgresql.org/ftp/source/
  •     V8 - https://github.com/v8/v8
  •     PLV8 - http://code.google.com/p/plv8js/wiki/PLV8

 MongoDB的最低级别是集合.  集合可以用表来表示:
 

  CREATE TABLE some_collection (   some_collection_id SERIAL NOT NULL PRIMARY KEY,   data JSON  );

字符型的JSON 被保存在 Postgres 表里,简单易行 (现在看是这样).

下面实现自动创建集合.  保存在集合表里:
 

  CREATE TABLE collection (   collection_id SERIAL NOT NULL PRIMARY KEY,   name VARCHAR  );   -- make sure the name is unique  CREATE UNIQUE INDEX idx_collection_constraint ON collection (name);

一旦表建好了,就可以通过存储过程自动创建集合.  方法就是先建表,然后插入建表序列.
 
  

 CREATE OR REPLACE FUNCTION create_collection(collection varchar) RETURNS  boolean AS $$   var plan1 = plv8.prepare('INSERT INTO collection (name) VALUES ($1)', [ 'varchar' ]);   var plan2 = plv8.prepare('CREATE TABLE col_' + collection +    ' (col_' + collection + '_id INT NOT NULL PRIMARY KEY, data JSON)');   var plan3 = plv8.prepare('CREATE SEQUENCE seq_col_' + collection);      var ret;      try {    plv8.subtransaction(function () {     plan1.execute([ collection ]);     plan2.execute([ ]);     plan3.execute([ ]);         ret = true;    });   } catch (err) {    ret = false;   }      plan1.free();   plan2.free();   plan3.free();      return ret;  $$ LANGUAGE plv8 IMMUTABLE STRICT;

有了存储过程,就方便多了:
 
  

 SELECT create_collection('my_collection');


解决了集合存储的问题,下面看看MongoDB数据解析.  MongoDB 通过点式注解方法操作完成这一动作:
 

  CREATE OR REPLACE FUNCTION find_in_obj(data json, key varchar) RETURNS  VARCHAR AS $$   var obj = JSON.parse(data);   var parts = key.split('.');      var part = parts.shift();   while (part && (obj = obj[part]) !== undefined) {    part = parts.shift();   }      // this will either be the value, or undefined   return obj;  $$ LANGUAGE plv8 STRICT;

上述功能返回VARCHAR,并不适用所有情形,但对于字符串的比较很有用:
 

  SELECT data   FROM col_my_collection   WHERE find_in_obj(data, 'some.element') = 'something cool'

除了字符串的比较, MongoDB还提供了数字类型的比较并提供关键字exists .  下面是find_in_obj() 方法的不同实现:
 

  CREATE OR REPLACE FUNCTION find_in_obj_int(data json, key varchar) RETURNS  INT AS $$   var obj = JSON.parse(data);   var parts = key.split('.');      var part = parts.shift();   while (part && (obj = obj[part]) !== undefined) {    part = parts.shift();   }      return Number(obj);  $$ LANGUAGE plv8 STRICT;     CREATE OR REPLACE FUNCTION find_in_obj_exists(data json, key varchar) RETURNS  BOOLEAN AS $$   var obj = JSON.parse(data);   var parts = key.split('.');      var part = parts.shift();   while (part && (obj = obj[part]) !== undefined) {    part = parts.shift();   }      return (obj === undefined ? 'f' : 't');  $$ LANGUAGE plv8 STRICT;

接下来是数据查询.  通过现有的材料来实现 find() 方法.
保存数据到集合中很简单。首先,我们需要检查JSON对象并寻找一个_id值。这部分代码是原生的假设,如果_id已存在这意味着一个更新,否则就意味着一个插入。请注意,我们目前还没有创建objectID,只使用了一个序列待其发生:
 

  CREATE OR REPLACE FUNCTION save(collection varchar, data json) RETURNS  BOOLEAN AS $$   var obj = JSON.parse(data);    var id = obj._id;    // if there is no id, naively assume an insert   if (id === undefined) {    // get the next value from the sequence for the ID    var seq = plv8.prepare("SELECT nextval('seq_col_" +      collection + "') AS id");    var rows = seq.execute([ ]);        id = rows[0].id;    obj._id = id;     seq.free();       var insert = plv8.prepare("INSERT INTO col_" + collection +      " (col_" + collection + "_id, data) VALUES ($1, $2)",      [ 'int', 'json']);     insert.execute([ id, JSON.stringify(obj) ]);    insert.free();   } else {    var update = plv8.prepare("UPDATE col_" + collection +     " SET data = $1 WHERE col_" + collection + "_id = $2",     [ 'json', 'int' ]);     update.execute([ data, id ]);   }    return true;  $$ LANGUAGE plv8 IMMUTABLE STRICT;

基于这个观点,我们可以构建一些插入的简单文档:

  {   "name": "Jane Doe",   "address": {    "street": "123 Fake Street",    "city": "Portland",    "state": "OR"   },   "age": 33  }     {   "name": "Sarah Smith",   "address": {    "street": "456 Real Ave",    "city": "Seattle",    "state": "WA"   }  }     {   "name": "James Jones",   "address": {    "street": "789 Infinity Way",    "city": "Oakland",    "state": "CA"   },   "age": 23  }

让我们创建一个集合并插入一些数据:

 

  work=# SELECT create_collection('data');   create_collection  -------------------   t  (1 row)     work=# SELECT save('data', '{ our object }');   save  ------   t  (1 row)

你可以通过检查“col_data”表的内容来查看对象。

其它翻译版本(1)

现在我们已经有了一些数据,让我们再查询一下。假设我们想查找住在俄勒冈或华盛顿州年龄大于30的所有人,使用一个MongoDB风格的find():
 

  {   "$or": [    {     "address.state": "OR"    },    {     "address.state": "WA"    }   ],   "age": {    "$gt": 30   }  }

因为上次我们已经创建了一些深度的包检测,现在就很容易创建查询并返回Jane Doe:
 

  SELECT data   FROM col_data   WHERE find_in_obj_int(data, 'age') > 30    AND (       find_in_obj(data, 'address.state') = 'OR'      OR       find_in_obj(data, 'address.state') = 'WA'      )

我采用了写一个递归调用函数来建立WHERE子句的方法。它有点长,所以我没有把它贴在这里而是放在GitHub上。一旦find()存储过程被创建,我们就可以在查询中使用它。我们应该能够看到Jane Doe被返回:

  work=# SELECT find('data', '{ "$or": [ { "address.state": "OR" }, { "address.state": "WA" } ], "age": { "$gt": 30 } }');

这样奏效:它不优雅,但它奏效。这是一个概念的证明,而且几乎没有像它一样好的可能。我之前曾被问过为什么不使用HSTORE。虽然你可以存储嵌套的HSTORE和数组值,但它仍不是JSON,并且不容易通过PLV8操作。这将需要一个从HSTORE到JSON的序列器,这个序列器在任何时间将请求的返回序列化成MongoDB接受的数据形式,但依旧太容易在JavaScript中处理。这是次优选择,毕竟我们是要在Postgres的基础上创建一个MongoDB的副本。

源码可以在GitHub上找到:fork并尝试一下吧,记得回馈哦。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表