二分查找算法的思想很简单,《编程珠玑》中的描述: 在一个包含t的数组内,二分查找通过对范围的跟综来解决问题。开始时,范围就是整个数组。通过将范围中间的元素与t比较并丢弃一半范围,范围就被缩小。这个过程一直持续,直到在t被发现,或者那个能够包含t的范围已成为空。
Donald Knuth在他的《Sorting and Searching》一书中指出,尽管第一个二分查找算法早在1946年就被发表,但第一个没有bug的二分查找算法却是在12年后才被发表出来。其中常见的一个bug是对中间值下标的计算,如果写成(low+high)/2,当low+high很大时可能会溢出,从而导致数组访问出错。改进的方法是将计算方式写成如下形式:low+ ( (high-low) >>1)即可。下面给出修改后的算法代码:
int binarysearch1(int a[],int n,int x) { int l,u,m; l=0;u=n; while(l<u) { m=l+((u-l)>>1); if(x<a[m]) u=m; else if(x==a[m]) return m; else l=m+1; } return -1; }
这里注意一点,由于使用的是不对称区间,所以下标的调整看上去有点不规整。一个是u=m,另一个是l=m+1。其实很好理解,调整前区间的形式应该是 [ )的形式,如果中间值比查找值小,那么调整的是左边界,也就是闭的部分,所以加1;否则,调整是右边界,是开的部分,所以不用减1。调整后仍是[ )的形式。当然也可以写成对称的形式。代码如下:
int binarysearch1(int a[],int n,int x) { int l,u,m; l=0;u=n-1; while(l<=u) { m=l+((u-l)>>1); if(x<a[m]) u=m-1; else if(x==a[m]) return m; else l=m+1; } return -1; }
这样也看上去比较规整,但是有个不足。如果想把程序改成“纯指针”的形式,就会有麻烦。修改成纯指针的代码如下:
int binarysearch2(int *a,int n,int x) { int *l,*u,*m; l=a;u=a+n-1; while(l<=u) { m=l+((u-l)>>1); if(x<*m) u=m-1; else if(x==*m) return m-a; else l=m+1; } return -1; }
当n为0时,会引用无效地址。而用非对称区间则不会有这个问题。代码如下:
int binarysearch2(int *a,int n,int x) { int *l,*u,*m; l=a;u=a+n; while(l<u) { m=l+((u-l)>>1); if(x<*m) u=m; else if(x==*m) return m-a; else l=m+1; } return -1; }
上面给出的二分查找是迭代法实现,当然也可以用递归的方式实现。代码如下:
int binarysearch3(int a[],int l,int u,int x) int m=l+((u-l)>>1); if(l<=u) { if(x<a[m]) return binarysearch3(a,l,m-1,x); else if(x==a[m]) return m; else return binarysearch3(a,m+1,u,x); } return -1;
上述这些二分算法,若数组元素重复,返回的是重复元素的某一个元素。如果希望返回被查找元素第一次出现的位置,则需要修改代码。下面给出了一种解法:
int binarysearch4(int a[],int n,int x) { int l,u,m; int flag=-1; l=0;u=n; while(l<u) { m=l+((u-l)>>1); if(x<a[m]) u=m; else if(x==a[m]) flag=u=m; else l=m+1; } return flag; }
下面是《编程珠玑》上的解法:
int binarysearch4(int a[],int n,int x) { int l,u,m; l=-1;u=n; while(l+1<u) { m=l+((u-l)>>1); if(a[m]<x) l=m; else u=m; } return (u>=n||a[u]!=x)?-1:u; }
至此二分算法的代码讨论结束,下面讨论一下程序的测试问题。《代码之美》有一章专门介绍二分查找算法的测试,非常漂亮。这里班门弄斧,简单给出几个测试用例。针对binarysearch1。测试程序如下:
#include <iostream> #include <cassert> #include <algorithm> #include <ctime> using namespace std; int calmid(int l,int u) { return l+((u-l)>>1); } int binarysearch1(int a[],int n,int x); #define bs1 binarysearch1 int main() { long start,end; start=clock(); int a[9]={-2147483648,-13,-10,-5,-3,0,1,400,2147483647}; //中值下标计算的测试 assert(calmid(0,1)==0); assert(calmid(0,2)==1); assert(calmid(1000000,2000000)==1500000); assert(calmid(2147483646,2147483647)==2147483646); assert(calmid(2147483645,2147483647)==2147483646); //冒烟测试 assert(bs1(a,9,0)==5); assert(bs1(a,9,1)==6); assert(bs1(a,9,2)==-1); //边界测试 assert(bs1(a,0,1)==-1); //0个元素 assert(bs1(a,1,-2147483648)==0); //1个元素 成功 assert(bs1(a,1,-2147483647)==-1); //1个元素 失败 assert(bs1(a,9,-2147483648)==0); //首个元素 assert(bs1(a,9,-3)==4); //中间元素 assert(bs1(a,9,2147483647)==8); //末尾元素 //自动化测试 int b[10000]; int i,j; for(i=0;i<10000;i++) { b[i]=i*10; for(j=0;j<=i;j++) { assert(bs1(b,i+1,j*10)==j); assert(bs1(b,i+1,j*10-5)==-1); } } //自动化测试 引入随机数 srand(time(0)); for(i=0;i<10000;i++) { b[i]=rand()%1000000; sort(&b[0],&b[i]); for(j=0;j<=i;j++) { int x=rand(); int k=bs1(b,i+1,x); if(k!=-1) assert(b[k]==x); } } end=clock(); cout<<(end-start)/1000.0<<'s'<<endl; return 0; }
注意到数组的元素有正数,负数,零,最大值,最小值。通常会忘掉负数的测试,引入最大值和最小值,主要是为了边界测试。
第一,测试了中值下标的计算。另外写了一个小函数,单独测试。考虑到内存可能放不下这么大的数组,因此只是模拟测试,并没有真正申请这么大的空间,但是对于中值下标的测试足够了。
第二,冒烟测试。即做一些最基本的测试。测试通过后进行边界测试。
第三,边界测试。这里有三种类型,一是针对数组元素个数,分别是0个,1个。二是针对元素位置,分别是首个元素,中间元素,末尾元素。三是针对元素值,有最大值,最小值,0等测试。
第四,自动化测试。这里自动生成测试的数组,然后针对每个元素进行成功查找测试。
第五,自动化测试,只不过数组的元素是随机值。
第五,性能测试。这里相关代码没有列出。以上测试都通过时,可以修改查找算法,添加性能测试的代码。其实可以简单添加一个比较的计数器。返回值从原来的查找结果改为比较的计数器值即可。代码比较简单,就不列了。
Note:二分查找容易忽略的一个bug
对于二分查找算法,相信大家肯定不会陌生。算法从一个排好序的数组中找指定的元素,如果找到了返回该元素在数组中的索引,否则返回-1。下面给出了解法。
//a为排好序的数组,n为数组的大小,x为指定元素 int binarySearch(int a[], int n, int x) { int left = 0, right = n-1, middle = 0; int tmp = 0; while(left <= right) { middle = (left + right)/2; tmp = a[middle]; if(x < tmp) right = middle - 1; else if(x > tmp) left = middle + 1; else return middle; } return -1; }
乍看没有错误,但是不幸的是,该程序存在一个bug。当数组极大时,(left+right)可能为负数,则数组下标溢出,程序崩溃。
解决的方案:将middle=(left+right)/2改为middle=left+(right-left)/2即可。即利用减法代替加法,从而消除上溢。
参考自《代码之美》