记得应该是16年的时候,从一个公开课看到了关于OCR方面的内容,里面讲到了通过OpenCV对身份证号码区域的剪裁以及使用Tess-Two进行文字识别,实现了对身份证号码的识别功能。
#include "stdafx.h"#include "idocr.h"#include <opencv2/opencv.hpp>#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"using namespace cv;using namespace std;void dealImg(char * path){ Mat src = imread(path); // 结果图 Mat dst; // 显示原图 imshow("原图", src); cvtColor(src, dst, COLOR_RGB2GRAY); // 高斯模糊,主要用于降噪 GaussianBlur(dst, dst, Size(3, 3), 0); imshow("GaussianBlur图", dst); // 二值化图,主要将灰色部分转成白色,使内容为黑色 threshold(dst, dst, 165, 255, THRESH_BINARY); imshow("threshold图", dst); // 中值滤波,同样用于降噪 medianBlur(dst, dst, 3); imshow("medianBlur图", dst); // 腐蚀操作,主要将内容部分向高亮部分腐蚀,使得内容连接,方便最终区域选取 erode(dst, dst, Mat(9, 9, CV_8U)); imshow("erode图", dst); //定义变量 vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(dst, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); Mat result; for (int i = 0; i < hierarchy.size(); i++) { Rect rect = boundingRect(contours.at(i)); rectangle(src, rect, Scalar(255, 0, 255)); // 定义身份证号位置大于图片的一半,并且宽度是高度的6倍以上 if (rect.y > src.rows / 2 && rect.width / rect.height > 6) { result = src(rect); imshow("身份证号", result); } } imshow("轮廓图", src);}