1. 前言
Golang context是Golang应用开发常用的并发控制技术,它与WaitGroup最大的不同点是context对于派生goroutine有更强的控制力,它可以控制多级的goroutine。
context翻译成中文是"上下文",即它可以控制一组呈树状结构的goroutine,每个goroutine拥有相同的上下文。
典型的使用场景如下图所示:
上图中由于goroutine派生出子goroutine,而子goroutine又继续派生新的goroutine,这种情况下使用WaitGroup就不太容易,因为子goroutine个数不容易确定。而使用context就可以很容易实现。
2. Context实现原理
context实际上只定义了接口,凡是实现该接口的类都可称为是一种context,官方包中实现了几个常用的context,分别可用于不同的场景。
2.1 接口定义
源码包中src/context/context.go:Context
定义了该接口:
type Context interface { Deadline() (deadline time.Time, ok bool) Done() <-chan struct{} Err() error Value(key interface{}) interface{}}
基础的context接口只定义了4个方法,下面分别简要说明一下:
2.1.1 Deadline()
该方法返回一个deadline和标识是否已设置deadline的bool值,如果没有设置deadline,则ok == false,此时deadline为一个初始值的time.Time值
2.1.2 Done()
该方法返回一个channel,需要在select-case语句中使用,如"case <-context.Done():"。
当context关闭后,Done()返回一个被关闭的管道,关闭的管理仍然是可读的,据此goroutine可以收到关闭请求;当context还未关闭时,Done()返回nil。
2.1.3 Err()
该方法描述context关闭的原因。关闭原因由context实现控制,不需要用户设置。比如Deadline context,关闭原因可能是因为deadline,也可能提前被主动关闭,那么关闭原因就会不同:
- 因deadline关闭:“context deadline exceeded”;
- 因主动关闭: "context canceled"。
当context关闭后,Err()返回context的关闭原因;当context还未关闭时,Err()返回nil;
2.1.3 Value()
有一种context,它不是用于控制呈树状分布的goroutine,而是用于在树状分布的goroutine间传递信息。
Value()方法就是用于此种类型的context,该方法根据key值查询map中的value。具体使用后面示例说明。
2.2 空context
context包中定义了一个空的context, 名为emptyCtx,用于context的根节点,空的context只是简单的实现了Context,本身不包含任何值,仅用于其他context的父节点。
emptyCtx类型定义如下代码所示:
type emptyCtx intfunc (*emptyCtx) Deadline() (deadline time.Time, ok bool) { return}func (*emptyCtx) Done() <-chan struct{} { return nil}func (*emptyCtx) Err() error { return nil}func (*emptyCtx) Value(key interface{}) interface{} { return nil}
context包中定义了一个公用的emptCtx全局变量,名为background,可以使用context.Background()获取它,实现代码如下所示:
var background = new(emptyCtx)func Background() Context { return background}
context包提供了4个方法创建不同类型的context,使用这四个方法时如果没有父context,都需要传入backgroud,即backgroud作为其父节点:
- WithCancel()
- WithDeadline()
- WithTimeout()
- WithValue()
context包中实现Context接口的struct,除了emptyCtx外,还有cancelCtx、timerCtx和valueCtx三种,正是基于这三种context实例,实现了上述4种类型的context。
context包中各context类型之间的关系,如下图所示:
struct cancelCtx、valueCtx、valueCtx都继承于Context,下面分别介绍这三个struct。
2.3 cancelCtx
源码包中src/context/context.go:cancelCtx
定义了该类型context:
type cancelCtx struct { Context mu sync.Mutex // protects following fields done chan struct{} // created lazily, closed by first cancel call children map[canceler]struct{} // set to nil by the first cancel call err error // set to non-nil by the first cancel call}
children中记录了由此context派生的所有child,此context被cancle时会把其中的所有child都cancle掉。
cancelCtx与deadline和value无关,所以只需要实现Done()和Err()接口外露接口即可。
2.3.1 Done()接口实现
按照Context定义,Done()接口只需要返回一个channel即可,对于cancelCtx来说只需要返回成员变量done即可。
这里直接看下源码,非常简单:
func (c *cancelCtx) Done() <-chan struct{} { c.mu.Lock() if c.done == nil { c.done = make(chan struct{}) } d := c.done c.mu.Unlock() return d}
由于cancelCtx没有指定初始化函数,所以cancelCtx.done可能还未分配,所以需要考虑初始化。
cancelCtx.done会在context被cancel时关闭,所以cancelCtx.done的值一般经历如三个阶段:nil --> chan struct{} --> closed chan。
2.3.2 Err()接口实现
按照Context定义,Err()只需要返回一个error告知context被关闭的原因。对于cancelCtx来说只需要返回成员变量err即可。
还是直接看下源码:
func (c *cancelCtx) Err() error { c.mu.Lock() err := c.err c.mu.Unlock() return err}
cancelCtx.err默认是nil,在context被cancel时指定一个error变量: var Canceled = errors.New("context canceled")
。
2.3.3 cancel()接口实现
cancel()内部方法是理解cancelCtx的最关键的方法,其作用是关闭自己和其后代,其后代存储在cancelCtx.children的map中,其中key值即后代对象,value值并没有意义,这里使用map只是为了方便查询而已。
cancel方法实现伪代码如下所示:
func (c *cancelCtx) cancel(removeFromParent bool, err error) { c.mu.Lock() c.err = err //设置一个error,说明关闭原因 close(c.done) //将channel关闭,以此通知派生的context for child := range c.children { //遍历所有children,逐个调用cancel方法 child.cancel(false, err) } c.children = nil c.mu.Unlock() if removeFromParent { //正常情况下,需要将自己从parent删除 removeChild(c.Context, c) }}
实际上,WithCancel()返回的第二个用于cancel context的方法正是此cancel()。
2.3.4 WithCancel()方法实现
WithCancel()方法作了三件事:
- 初始化一个cancelCtx实例
- 将cancelCtx实例添加到其父节点的children中(如果父节点也可以被cancel的话)
- 返回cancelCtx实例和cancel()方法
其实现源码如下所示:
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) { c := newCancelCtx(parent) propagateCancel(parent, &c) //将自身添加到父节点 return &c, func() { c.cancel(true, Canceled) }}
这里将自身添加到父节点的过程有必要简单说明一下:
- 如果父节点也支持cancel,也就是说其父节点肯定有children成员,那么把新context添加到children里即可;
- 如果父节点不支持cancel,就继续向上查询,直到找到一个支持cancel的节点,把新context添加到children里;
- 如果所有的父节点均不支持cancel,则启动一个协程等待父节点结束,然后再把当前context结束。
2.3.5 典型使用案例
一个典型的使用cancel context的例子如下所示:
package mainimport ( "fmt" "time" "context")func HandelRequest(ctx context.Context) { go WriteRedis(ctx) go WriteDatabase(ctx) for { select { case <-ctx.Done(): fmt.Println("HandelRequest Done.") return default: fmt.Println("HandelRequest running") time.Sleep(2 * time.Second) } }}func WriteRedis(ctx context.Context) { for { select { case <-ctx.Done(): fmt.Println("WriteRedis Done.") return default: fmt.Println("WriteRedis running") time.Sleep(2 * time.Second) } }}func WriteDatabase(ctx context.Context) { for { select { case <-ctx.Done(): fmt.Println("WriteDatabase Done.") return default: fmt.Println("WriteDatabase running") time.Sleep(2 * time.Second) } }}func main() { ctx, cancel := context.WithCancel(context.Background()) go HandelRequest(ctx) time.Sleep(5 * time.Second) fmt.Println("It's time to stop all sub goroutines!") cancel() //Just for test whether sub goroutines exit or not time.Sleep(5 * time.Second)}
上面代码中协程HandelRequest()用于处理某个请求,其又会创建两个协程:WriteRedis()、WriteDatabase(),main协程创建创建context,并把context在各子协程间传递,main协程在适当的时机可以cancel掉所有子协程。
程序输出如下所示:
HandelRequest runningWriteDatabase runningWriteRedis runningHandelRequest runningWriteDatabase runningWriteRedis runningHandelRequest runningWriteDatabase runningWriteRedis runningIt's time to stop all sub goroutines!WriteDatabase Done.HandelRequest Done.WriteRedis Done.
2.4 timerCtx
源码包中src/context/context.go:timerCtx
定义了该类型context:
type timerCtx struct { cancelCtx timer *time.Timer // Under cancelCtx.mu. deadline time.Time}
timerCtx在cancelCtx基础上增加了deadline用于标示自动cancel的最终时间,而timer就是一个触发自动cancel的定时器。
由此,衍生出WithDeadline()和WithTimeout()。实现上这两种类型实现原理一样,只不过使用语境不一样:
- deadline: 指定最后期限,比如context将2018.10.20 00:00:00之时自动结束
- timeout: 指定最长存活时间,比如context将在30s后结束。
对于接口来说,timerCtx在cancelCtx基础上还需要实现Deadline()和cancel()方法,其中cancel()方法是重写的。
2.4.1 Deadline()接口实现
Deadline()方法仅仅是返回timerCtx.deadline而矣。而timerCtx.deadline是WithDeadline()或WithTimeout()方法设置的。
2.4.2 cancel()接口实现
cancel()方法基本继承cancelCtx,只需要额外把timer关闭。
timerCtx被关闭后,timerCtx.cancelCtx.err将会存储关闭原因:
- 如果deadline到来之前手动关闭,则关闭原因与cancelCtx显示一致;
- 如果deadline到来时自动关闭,则原因为:"context deadline exceeded"
2.4.3 WithDeadline()方法实现
WithDeadline()方法实现步骤如下:
- 初始化一个timerCtx实例
- 将timerCtx实例添加到其父节点的children中(如果父节点也可以被cancel的话)
- 启动定时器,定时器到期后会自动cancel本context
- 返回timerCtx实例和cancel()方法
也就是说,timerCtx类型的context不仅支持手动cancel,也会在定时器到来后自动cancel。
2.4.4 WithTimeout()方法实现
WithTimeout()实际调用了WithDeadline,二者实现原理一致。
看代码会非常清晰:
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) { return WithDeadline(parent, time.Now().Add(timeout))}
2.4.5 典型使用案例
下面例子中使用WithTimeout()获得一个context并在其了协程中传递:
package mainimport ( "fmt" "time" "context")func HandelRequest(ctx context.Context) { go WriteRedis(ctx) go WriteDatabase(ctx) for { select { case <-ctx.Done(): fmt.Println("HandelRequest Done.") return default: fmt.Println("HandelRequest running") time.Sleep(2 * time.Second) } }}func WriteRedis(ctx context.Context) { for { select { case <-ctx.Done(): fmt.Println("WriteRedis Done.") return default: fmt.Println("WriteRedis running") time.Sleep(2 * time.Second) } }}func WriteDatabase(ctx context.Context) { for { select { case <-ctx.Done(): fmt.Println("WriteDatabase Done.") return default: fmt.Println("WriteDatabase running") time.Sleep(2 * time.Second) } }}func main() { ctx, _ := context.WithTimeout(context.Background(), 5 * time.Second) go HandelRequest(ctx) time.Sleep(10 * time.Second)}
主协程中创建一个10s超时的context,并将其传递给子协程,10s自动关闭context。程序输出如下:
HandelRequest runningWriteRedis runningWriteDatabase runningHandelRequest runningWriteRedis runningWriteDatabase runningHandelRequest runningWriteRedis runningWriteDatabase runningHandelRequest Done.WriteDatabase Done.WriteRedis Done.
2.5 valueCtx
源码包中src/context/context.go:valueCtx
定义了该类型context:
type valueCtx struct { Context key, val interface{}}
valueCtx只是在Context基础上增加了一个key-value对,用于在各级协程间传递一些数据。
由于valueCtx既不需要cancel,也不需要deadline,那么只需要实现Value()接口即可。
2.5.1 Value()接口实现
由valueCtx数据结构定义可见,valueCtx.key和valueCtx.val分别代表其key和value值。 实现也很简单:
func (c *valueCtx) Value(key interface{}) interface{} { if c.key == key { return c.val } return c.Context.Value(key)}
这里有个细节需要关注一下,即当前context查找不到key时,会向父节点查找,如果查询不到则最终返回interface{}。也就是说,可以通过子context查询到父的value值。
2.5.2 WithValue()方法实现
WithValue()实现也是非常的简单, 伪代码如下:
func WithValue(parent Context, key, val interface{}) Context { if key == nil { panic("nil key") } return &valueCtx{parent, key, val}}
2.5.3 典型使用案例
下面示例程序展示valueCtx的用法:
package mainimport ( "fmt" "time" "context")func HandelRequest(ctx context.Context) { for { select { case <-ctx.Done(): fmt.Println("HandelRequest Done.") return default: fmt.Println("HandelRequest running, parameter: ", ctx.Value("parameter")) time.Sleep(2 * time.Second) } }}func main() { ctx := context.WithValue(context.Background(), "parameter", "1") go HandelRequest(ctx) time.Sleep(10 * time.Second)}
上例main()中通过WithValue()方法获得一个context,需要指定一个父context、key和value。然后通将该context传递给子协程HandelRequest,子协程可以读取到context的key-value。
注意:本例中子协程无法自动结束,因为context是不支持cancle的,也就是说<-ctx.Done()永远无法返回。如果需要返回,需要在创建context时指定一个可以cancel的context作为父节点,使用父节点的cancel()在适当的时机结束整个context。
总结
Context仅仅是一个接口定义,跟据实现的不同,可以衍生出不同的context类型;
cancelCtx实现了Context接口,通过WithCancel()创建cancelCtx实例;
timerCtx实现了Context接口,通过WithDeadline()和WithTimeout()创建timerCtx实例;
valueCtx实现了Context接口,通过WithValue()创建valueCtx实例;
三种context实例可互为父节点,从而可以组合成不同的应用形式;
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。