二叉树是数据结构和算法的重要组成部分,其实二叉树的主要目的是解决寻找节点的线性前驱和后继不方便的问题,下文是武林技术频道小编和大家分享的C语言实现二叉树的搜索及相关算法示例,一起去看看吧。
二叉树(二叉查找树)是这样一类的树,父节点的左边孩子的key都小于它,右边孩子的key都大于它。
二叉树在查找和存储中通常能保持logn的查找、插入、删除,以及前驱、后继,最大值,最小值复杂度,并且不占用额外的空间。
这里演示二叉树的搜索及相关算法:
#include<stack>#include<queue>using namespace std;class tree_node{public: int key; tree_node *left; tree_node *right; int tag; tree_node(){ key = 0; left = right = NULL; tag = 0; } ~tree_node(){}};void visit(int value){ printf("%d/n", value);}// 插入tree_node * insert_tree(tree_node *root, tree_node* node){ if (!node){ return root; } if (!root){ root = node; return root; } tree_node * p = root; while (p){ if (node->key < p->key){ if (p->left){ p = p->left; } else{ p->left = node; break; } } else{ if (p->right){ p = p->right; } else{ p->right = node; break; } } } return root;}// 查询key所在nodetree_node* search_tree(tree_node* root, int key){ tree_node * p = root; while (p){ if (key < p->key){ p = p->left; } else if (key > p->key){ p = p->right; } else{ return p; } } return NULL;}// 创建树tree_node* create_tree(tree_node *t, int n){ tree_node * root = t; for (int i = 1; i<n; i++){ insert_tree(root, t + i); } return root;}// 节点前驱tree_node* tree_pre(tree_node* root){ if (!root->left){ return NULL; } tree_node* p = root->left; while (p->right){ p = p->right; } return p;}// 节点后继tree_node* tree_suc(tree_node* root){ if (!root->right){ return NULL; } tree_node* p = root->right; while (p->left){ p = p->left; } return p;}// 中序遍历void tree_walk_mid(tree_node *root){ if (!root){ return; } tree_walk_mid(root->left); visit(root->key); tree_walk_mid(root->right);}// 中序遍历非递归void tree_walk_mid_norecursive(tree_node *root){ if (!root){ return; } tree_node* p = root; stack<tree_node*> s; while (!s.empty() || p){ while (p){ s.push(p); p = p->left; } if (!s.empty()){ p = s.top(); s.pop(); visit(p->key); p = p->right; } }}// 前序遍历void tree_walk_pre(tree_node *root){ if (!root){ return; } visit(root->key); tree_walk_pre(root->left); tree_walk_pre(root->right);}// 前序遍历非递归void tree_walk_pre_norecursive(tree_node *root){ if (!root){ return; } stack<tree_node*> s; tree_node* p = root; s.push(p); while (!s.empty()){ tree_node *node = s.top(); s.pop(); visit(node->key); if (node->right){ s.push(node->right); } if (node->left){ s.push(node->left); } }}// 后序遍历void tree_walk_post(tree_node *root){ if (!root){ return; } tree_walk_post(root->left); tree_walk_post(root->right); visit(root->key);}// 后序遍历非递归void tree_walk_post_norecursive(tree_node *root){ if (!root){ return; } stack<tree_node*> s; s.push(root); while (!s.empty()){ tree_node * node = s.top(); if (node->tag != 1){ node->tag = 1; if (node->right){ s.push(node->right); } if (node->left){ s.push(node->left); } } else{ visit(node->key); s.pop(); } }}// 层级遍历非递归void tree_walk_level_norecursive(tree_node *root){ if (!root){ return; } queue<tree_node*> q; tree_node* p = root; q.push(p); while (!q.empty()){ tree_node *node = q.front(); q.pop(); visit(node->key); if (node->left){ q.push(node->left); } if (node->right){ q.push(node->right); } }}// 拷贝树tree_node * tree_copy(tree_node *root){ if (!root){ return NULL; } tree_node* newroot = new tree_node(); newroot->key = root->key; newroot->left = tree_copy(root->left); newroot->right = tree_copy(root->right); return newroot;}// 拷贝树tree_node * tree_copy_norecursive(tree_node *root){ if (!root){ return NULL; } tree_node* newroot = new tree_node(); newroot->key = root->key; stack<tree_node*> s1, s2; tree_node *p1 = root; tree_node *p2 = newroot; s1.push(root); s2.push(newroot); while (!s1.empty()){ tree_node* node1 = s1.top(); s1.pop(); tree_node* node2 = s2.top(); s2.pop(); if (node1->right){ s1.push(node1->right); tree_node* newnode = new tree_node(); newnode->key = node1->right->key; node2->right = newnode; s2.push(newnode); } if (node1->left){ s1.push(node1->left); tree_node* newnode = new tree_node(); newnode->key = node1->left->key; node2->left = newnode; s2.push(newnode); } } return newroot;}int main(){ tree_node T[6]; for (int i = 0; i < 6; i++){ T[i].key = i*2; } T[0].key = 5; tree_node* root = create_tree(T, 6); //tree_walk_mid(root); //tree_walk_mid_norecursive(root); //tree_walk_pre(root); //tree_walk_pre_norecursive(root); //tree_walk_post(root); //tree_walk_post_norecursive(root); //tree_walk_level_norecursive(root); visit(search_tree(root, 6)->key); visit(tree_pre(root)->key); visit(tree_suc(root)->key); //tree_node* newroot = tree_copy_norecursive(root); //tree_walk_mid(newroot); return 0;}以上就是关于C语言实现二叉树的搜索及相关算法示例的全部内容,武林技术频道小编预祝大家都能学有所成,感谢大家一直以来的支持。
新闻热点
疑难解答
图片精选