pandas获取groupby分组里最大值所在的行方法
如下面这个DataFrame,按照Mt分组,取出Count最大的那行
import pandas as pddf = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]})df
Count | Mt | Sp | Value | |
---|---|---|---|---|
0 | 3 | s1 | a | 1 |
1 | 2 | s1 | b | 2 |
2 | 5 | s2 | c | 3 |
3 | 10 | s2 | d | 4 |
4 | 10 | s2 | e | 5 |
5 | 6 | s3 | f | 6 |
方法1:在分组中过滤出Count最大的行
df.groupby('Mt').apply(lambda t: t[t.Count==t.Count.max()])
Count | Mt | Sp | Value | ||
---|---|---|---|---|---|
Mt | |||||
s1 | 0 | 3 | s1 | a | 1 |
s2 | 3 | 10 | s2 | d | 4 |
4 | 10 | s2 | e | 5 | |
s3 | 5 | 6 | s3 | f | 6 |
方法2:用transform获取原dataframe的index,然后过滤出需要的行
print df.groupby(['Mt'])['Count'].agg(max)idx=df.groupby(['Mt'])['Count'].transform(max)print idxidx1 = idx == df['Count']print idx1df[idx1]
Mts1 3s2 10s3 6Name: Count, dtype: int640 31 32 103 104 105 6dtype: int640 True1 False2 False3 True4 True5 Truedtype: bool
Count | Mt | Sp | Value | |
---|---|---|---|---|
0 | 3 | s1 | a | 1 |
3 | 10 | s2 | d | 4 |
4 | 10 | s2 | e | 5 |
5
学习交流
热门图片
猜你喜欢的新闻
新闻热点 2020-02-23 14:27:16
2020-02-22 09:45:28
2020-02-22 09:42:20
2020-02-22 09:39:07
2020-02-21 16:46:56
2020-02-20 10:01:00
疑难解答 |